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1 Introduction

Danish employers report that every year close to a fifth of the their workers change occupations

(e.g., technician, engineer, manager). Similar levels of occupational mobility are reported for the

US.1 Moreover, these gross flows are much larger than the net flows that are needed to account

for the changing sizes of occupations. What induces workers to undertake these occupational

changes? The answer to this question seems especially interesting because occupational choices

and wages are closely related. First, the differences in average occupational wages are substantial

and persistent. Second, it has recently been argued that the returns to occupational tenure are

nearly as large as the returns to labor market experience and much larger than the returns

to firm or industry tenure.2 Thus, understanding workers’ occupational choices is important

for understanding the allocation of the labor force across productive activities, for interpreting

earning patterns, for measuring the returns to human capital accumulation, and for assessing

the effects of various policies affecting sorting of workers across occupations. Since workers

choose occupations endogenously, the outcome of such analysis will depend on the theory used

to account for selection of workers across occupations. While there exist a number of theories of

occupational choice, it remains an open empirical question which selection process is consistent

with the data.

This paper contributes to our understanding of selection in occupational choices by looking

at occupational mobility data in a novel way. Using administrative data on 100% of the Danish

workforce we provide new direct evidence on patterns of worker mobility across occupations. This

evidence conflicts with several existing theories that are often used to account for the endogeneity

in occupational choice, but we can show analytically that the patterns are explained consistently

within a theory of vertical occupational mobility combined with learning about worker ability.

We document that for most occupations, mobility is U-shaped and directional: it is both

the low wage and the high wage workers within an occupation who have a particularly large

probability of leaving that occupation, while the lowest probability of leaving is associated with

the medium wage workers within the occupation. More than three-quarters of the labor force are

employed in occupations exhibiting this pattern. While switching probabilities are particularly

high at both ends of the wage spectrum within an occupation, the direction of sorting is very

different for high and low wage earners. Those earning low wages relative to other workers in the

same occupation tend to leave for new occupations that on average pay less to their workforce

than the old occupation, while those with high relative wages in their occupation tend to leave

1Kambourov and Manovskii (2008), Moscarini and Thomsson (2007).
2Shaw (1984, 1987), Kambourov and Manovskii (2009b), Sullivan (2009), Groes (2010), Zangelidis (2008).
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for occupations that on average pay more to their workforce. These patterns remain whether we

focus on workers who stay with the same firm or on those who switch firms and across various

ways of defining occupations. The U-shaped pattern where low and high wage earners in an

occupation are most likely to leave it is predominant except for occupations with steeply rising

(declining) productivity, where mainly the lower (higher) paid workers within this occupation

tend to leave.

We are able to document these patterns because the data allows us to compare the behavior

of workers relative to that of other workers with similar characteristics in the same occupation.

Such analysis has been missing in the literature partly because most longitudinal datasets that

have traditionally been analyzed feature only panels of a few thousand workers, and with around

three hundred occupations, an analysis on a per occupation basis was not feasible. This new

look at the data has at least two important direct implications: First, selection is not just one-

sided. In particular, the well documented wage growth with tenure in an occupation is not

just due to low wage earners leaving and high wage earners staying (wage growth based on

composition). In fact, a large number of high wage earners are leaving their occupations as well,

and models generating the wage implications based on worker selection need to take this into

account. Second, occupations with strong productivity growth nevertheless shed a large fraction

of their workforce, a stark feature of the data not featured by the commonly used models.

A number of prominent models of occupational choice feature counter-factual one-sided

selection, typically with relatively low wage earners leaving the occupation while high wage

earners stay. One popular class of such models is based on horizontal sorting due to match-

specific shocks. Originating from Jovanovic (1979) and extended to occupational mobility by,

e.g., McCall (1990) and Neal (1999), this work is based on the idea that occupations are identical

(e.g., not different with respect to skill requirements), but workers find out the quality of their

idiosyncratic match with an occupation over time. Horizontal re-sorting occurs when workers

realize that their match-specific productivity is low and abandon the match in favor of (the search

for) a better one. Thus, the model predicts that workers with low wages (low quality matches)

leave the occupation, and their next occupational choice is a random draw. Both predictions

do not match up with our findings in the data. Similarly, island economy models based on

human capital extensions of Lucas and Prescott (1974), such as Kambourov and Manovskii

(2005) and Alvarez and Shimer (2009), typically predict that it is the the low human capital and

hence, low wage, workers who are the first to switch if occupational demand declines since high

human capital workers have more incentive to wait for the conditions to improve. If occupational

demand rises, no one leaves the occupation. The wage a switcher obtains in the new occupation
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is independent of her relative wage in the previous occupation. Once again, these implications

do not match up with the patterns we find in the data.

The main shortcoming of these models relative to our findings in the data is that high wage

earners have no-where better to go to, and therefore stay in their occupation. This is different in

the classic Roy (1951) model with absolute advantage: High wage earners in a low productivity

occupation leave if the productivity of their current occupation drops further relative to the

productivity in the next better occupation. Yet, standard versions of the Roy (1951) model have

the drawback that they only feature net occupational mobility due to shocks to occupations, and

an occupation with rising productivity or demand does not shed any of its workers. Moreover,

in most specifications only workers in one side of the occupational wage spectrum (either high

or low earners) switch occupations, which holds even in models that introduce gross mobility

through search frictions (e.g. Moscarini (2001)).3

Nevertheless, we show in the theoretical part of this paper that a tractable combination of

the previous models − learning combined with a notion of absolute advantage − does account

well for all of the qualitative patterns that we find in the data. The theoretical work is based on

an equilibrium extension of the decision-theoretic model in Gibbons and Waldman (1999) that

was successfully used to understand promotion dynamics within firms. Our model features the

combination of sorting similar to the standard Roy (1951) model with absolute advantage, and

learning about one’s own abilities. As workers learn that the current occupation is not a good

fit, it is not optimal to sample randomly from the remaining occupations, but to use the prior

information in their new choice. If they did particularly well, workers find it optimal to move

up to a more demanding occupation, if they did particularly poorly, they are more suitable for a

less demanding occupation. They will be better-off moving there rather than taking large wage

cuts in their current occupation. Our theory abstracts from an explicit notion of firms since in

the data the pattern of occupational switching is similar for workers who stay with the same firm

as for those who switch firms.4

3The most popular specifications consider absolute and relative advantage across two occupations. For this
setting we discuss the predictions in more detail in Section 5.1.

4Our analysis suggests that firm affiliation might not be of first importance to understand the basic patterns
of occupational mobility. Nevertheless, an extension of our model in which workers maximize the quality of their
occupational fit but also receive idiosyncratic shocks that affect the performance at each individual firm, is likely
to generate similar features as those outlined in Neal (1999) in his horizontal learning model despite the different
predictions for wage patterns: Workers would first choose the appropriate occupation and subsequently look for
the appropriate firm with an employment opportunity in such an occupation. Also, the presence of any labor
market frictions makes firms with employment in more occupations more attractive because the internal labor
market can facilitate transitions between these occupations (see Papageorgiou (2010) for such a model, yet with
horizontal sorting which does not generate the U-shaped connection between wage and occupational choice in the
internal labor market that we document).
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In addition to accounting for the qualitative U-shaped mobility patterns and the direction

of switching, this theory also has secondary implications that conform well with the data. Con-

sidering occupations with roughly constant productivities, the theory predicts that workers who

switch to occupations with higher average wages see faster wage growth than workers who stay,

who, in turn, see faster wage growth than workers who move to occupations with lower average

wages. In terms of wage levels, those who switch to an occupation with higher average wages

do better than those who remain in the old occupation, but worse than those who already work

in the new occupation. The opposite holds for workers that move occupations with lower aver-

age wages. Finally, the equilibrium nature of the model implies that occupations with sharply

increasing productivity will retain their high earners but shed their low earners (who are driven

out by an inflow of higher qualified workers), and the opposite holds for occupations with a sub-

stantial decline in productivity. These predictions are confirmed in the data. The last prediction,

in particular, requires an equilibrium model and is not a feature of decision-theoretic models like

the Roy model where an occupation with rising productivity attracts more workers but does not

shed any.

The idea to link sorting in vertical hierarchies to learning about one’s own ability has received

less attention than horizontal sorting due to match-specific learning, but nevertheless has a long

tradition (see, e.g., Johnson (1978), Miller (1984), Gibbons and Katz (1992), Biddle and Roberts

(1994), Jovanovic and Nyarko (1997), Papageorgiou (2007), and Eeckhout and Weng (2009)).

However, most existing work has restricted the exposition to only two occupations. This is

partly due to the focus on different speed of learning in different occupations, which tends to

significantly increase the difficulty of the analysis. For our purposes it is crucial to extend the

analysis to more than two occupations because U-shapes arise only in intermediate occupations:

in the highest-ranked occupation top earners have no-where else to go to, and in the lowest-ranked

occupation low-wage workers have no-where else to go to. To consider several occupations in a

parsimonious model we abstract from differences in the speed of learning.

In the next section we present in detail the empirical findings that switching is U-shaped

and directional, the main indicators that suggest the use of the comparative advantage model

that we outline in Section 3. In the initial theoretical part we stay deliberately simple in order to

present a theory on the same level of tractability as existing work on learning under horizontal

sorting. We show that the model conforms well with the basic facts and its additional predictions

also match up with the data. We should mention that, as in all models of learning mentioned

here, the patterns of mobility induced by learning about workers’ ability can also be generated

by a particular exogenous process for ability itself and no learning. The main natural feature of
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a learning model is that workers become more convinced of their ability over time (the variance

of “ability realizations” decreases over time), and we show in Section 3.3 that this naturally

explains some of the prominent additional patterns in the data. While this is suggestive of a

learning model, a more agnostic specification based on ability changes with decreasing variance

would have the same explanatory power (as is the case in all of the related literature).

While the initial model is stationary and occupational productivities are constant over time,

in Section 4.1 we extend the model to allow for occupations with time-varying productivities.

We show that occupations with strong productivity growth retain their high wage (high ability)

workers but shed their low wage (low ability) workers whose skills are no longer commensurate.

Occupations experiencing a substantial decline in productivity loose their high ability workers

who find it more worthwhile to work elsewhere and retain their low ability (low wage) workers.

We also document such patterns in the data.

In Section 4.2 we extend the stationary environment to allow for human capital accumulation.

In the basic model workers switch to better occupations only when they learn that they have

higher ability than expected. The introduction of general human capital implies that workers

move up the occupational career ladder also because they become more skilled over time. In its

extreme, if we shut down learning, this channel would still generate occupational switching, but

only to better occupations (for a related model with a similar career-ladder feature, see Sichernam

and Galor (1990)). While such human capital accumulation is important to understand why

we find somewhat more upward mobility in the data than downward mobility, the fact that a

substantial fraction of occupational switches (even within a firm) is downward suggests that in a

substantial number of cases human capital accumulation is outweighed by some other force, such

as gradual learning about the capabilities of the worker, which is the main feature of our baseline

model. We also extend the model to take into account that even within vertical occupational

hierarchies a switch may require a new set of skills which induces costs to occupational switching.

For example, engineers that move up to manage small groups need to adjust their human resource

skills, while those that move down to become technicians need to adjust their applied skills.5 We

extend our analysis to allow for general and occupation-specific human capital accumulation as

well as retraining costs, and show that the predictions of the model remain robust.

After laying out our model, in Section 5 we return to a more in-depth discussion of some

related literature. In particular, we discuss in more detail similarities and differences to the

5We will show that U-shaped mobility patterns and directional sorting remain when we omit the occupational
categories of managers, and even when we combine all occupations with relatively similar descriptions into one.
This suggests that retraining and skill costs are indeed present, since the descriptions of the remaining occupations
differ substantially.
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standard Roy (1951) model. We also discuss the connection to the work by Gibbons, Katz,

Lemieux, and Parent (2005), who propose an empirical strategy to estimate parameters of a

closely related model based on using lagged occupational choices as instruments. In their decision-

theoretic work they specify a somewhat different functional form for the workers’ choice than the

one that comes out of our equilibrium specification, yet we highlight the close connection which

suggests that their instruments might be useful in future empirical work with our model.

Of course, we do not think that the simple vertical sorting mechanism that we propose

accounts for the full extent of occupational mobility. In the Conclusion we discuss the broader

research agenda, and the challenges to empirically assess the exact quantitative implications of

the patterns presented in this paper. Both vertical and horizontal moves likely arise in the labor

market, i.e., some occupations are considered better than others while some are just different and

people switch along both of these dimensions. And among those occupations that can be ranked

as better or worse, the ranking might change over time. Therefore, it is likely that match-specific

components and the volatility of productivities of occupations or of the demands for their services

are responsible for a nontrivial share of mobility. An important part of a future agenda is to

identify which occupations form vertical hierarchies in order to identify the costs of switching

within and across hierarchies. Our analysis suggests that many of the occupational switches do

arise within hierarchies. Therefore, we do think that the mechanism we emphasize should be an

important part of any comprehensive theory of occupational mobility.

2 The U-shapes of Occupational Mobility: Evidence

2.1 Data

We use the administrative Danish register data covering 100% of the population in the years 1980

to 2002. The first part of the data is from the Integrated Database for Labor Market Research

(IDA), which contains annual information on socioeconomic variables (e.g., age, gender, educa-

tion, etc.) and characteristics of employment (e.g., private sector or government, occupations,

industries, etc.) of the population. Information on wages is extracted from the Income Registers

and consists of the hourly wage in the job held in the last week in November of each year. Wage

information is not available for workers who are not employed in the last week of November.

The wages are deflated to the 1995 wage level using Statistics Denmark’s consumer price index

and trimmed from above and below at the 0.99 and 0.01 percentile for each year of the selected

samples described below.

We use the Danish rather than the U.S. data for two reasons. First, the sample size is
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much larger. Our objective is to document the patterns of occupational mobility depending

on the position of the individual in the wage distribution within her occupation. A sample

sufficiently large to be representative in each occupation is essential for this purpose. Second,

the administrative data minimizes the amount of measurement error in occupational coding that

plagues the available U.S. data (see Kambourov and Manovskii (2009b)). Nevertheless, we find

that the features of occupational mobility that can be compared between the U.S. and Denmark

are quite similar.6 This leads us to expect that the patterns of occupational mobility that we

describe using Danish data generalize to, e.g., the U.S.

As is standard in the literature, the hourly wage variable is calculated as the sum of total

labor market income and mandatory pension fund payments of the job held in the last week in

November of a given year divided by the total number of hours worked in the job held in November

of that year. The labor income and the pension contributions are from the tax authorities and

are considered to be highly reliable. Wage structure is potentially affected by the presence of

centralized wage bargaining in Denmark (see Dahl, le Maire, and Munch (2009) for a detailed

description of the system). However, only around 13% of workers are covered by industry-wide

bargaining where wages cannot be modified at the firm level. In other cases wages are bargained

at the firm level, potentially subject to the lower bound on wages of the very inexperienced

workers set at the industry level.

Occupational affiliation is defined by the so-called DISCO code, which is the Danish version of

the ISCO-88 classification (International Standard Classification of Occupations).7 The validity

of the codes is considered to be high, in particular, because they are monitored by employers

and unions and form the basis of wage bargaining at the national level. We use the most

disaggregated definition of the occupational classification available, i.e., the 4-digit code. This

classification corresponds fairly closely to the 3-digit Standard Occupational Classification used

by the U.S. Census. We perform our analysis at this level of aggregation because it appears to

better match the characteristics of the tasks performed by the workers than more aggregated

classifications. For example, the following pairs of occupations have distinct 4-digit codes but the

same 3-digit ones: economists and foreign language translators, hair-dressers and undertakers,

radio-announcers and circus clowns, plumbers and electricians, etc. Moreover, the main variable

used in our analysis is the position of the worker in the wage distribution of his occupation. This

is affected by the coarseness of the classification used. For example, only 28% of economists

6For example, we find that the level of occupational mobility in Denmark is similar to the estimates of mobility
in the U.S. that account for the coding error. Groes (2010) documents that the relationship between occupational
tenure and wages in Denmark is similar to that found in the U.S. She also reports that the hazard rates of leaving
an occupation in Denmark are similar to those estimated for the U.S.

7ISCO-88 codes are described at http : //www.ilo.org/public/english/bureau/stat/isco/isco88/major.htm.
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in the lowest decile of the economists’ wage distribution are in the lowest decile of their 3-digit

occupational group. Similarly, some workers in the lowest decile of the wage distribution of

chemical engineers are in the 7th decile of the wage distribution of their 3-digit occupation.

These arguments notwithstanding, however, we will show that all of the results reported below

are qualitatively similar when the analysis is performed at the 1-, 2-, and 3-digit levels.

2.1.1 Sample Selection

While the Danish register data dates back to 1980, because information on firm tenure is available

only after 1995 and because of a change in the occupational classification in 1995, we study the

data spanning the 1995-2002 period (the latter cut-off was dictated by the data availability at

the time we performed the analysis). We use the pre-1995 data in constructing some of the

variables. For example, in 1995 the two occupational classifications used in the Danish register

data are linked to the worker’s job which allows us to construct measures of occupational tenure.

For example, a worker will be considered to have 5 years of occupational experience in 1996

if he is observed in the same occupation in 1995 and 1996 according to the new occupational

classification and at the same time has the same occupation from 1992 to 1995 according to the

old occupational classification.

We only select male workers in order to minimize the impact of fertility decision on labor

market transitions. The sample is restricted to employees because we do not observe earnings

for the self-employed. Since we study occupational mobility between consecutive years, the

sample only includes workers with valid occupation data in the year after we use them in the

analysis (e.g., we use information from 2002 for this purpose). To construct experience and

tenure variables we need to observe each individual’s entire labor market history. Thus, our

sample includes all individuals completing their education in or after 1980 if they remain in the

sample at least until 1995. The sample includes graduates from all types of education from 7th

grade to a graduate degree conditional on observing the individual not going back to school for at

least three years after graduation. Thus, a worker who completed high school, worked for three

years, then obtained a college degree and went back to full-time work will have two spells in

our sample: first, the three years between high school and college, and second, after graduating

from college. If he worked for less than three years between high school and college, he joins our

sample only after graduating from college.

We conduct our analysis using two samples that differ in additional restrictions that we

impose. We label these samples a Small Sample and a Large Sample. Their construction is as

follows.
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Our overriding concern in constructing the Small Sample is the reliability and consistency

of the data. This sample is restricted to full time workers in the private sector. The restriction

to private-sector workers is due to the concern that wage setting and mobility patterns in the

government sector may be partially affected by non-market considerations. Moreover, in the

period 1995 to 1998 we do not observe the workplace of public employees, which makes it difficult

to condition on employer tenure if these workers are included in the sample. Part-time workers

are excluded because they do not have as dependable wage information and do not have any

occupational codes. We truncate workers’ labor market histories the first time we observe them

in part-time employment, public employment, self-employment, or at the first observation with

missing wage data or missing firm or occupational codes.8 In order to have the same distribution

of experience in the period 1995 to 2002 we truncate worker histories 15 years after graduation.

Our main objective in constructing the Large Sample is to maximize the size of the sample.

Consequently, it is much less restrictive. It includes public-sector workers and includes workers

who have spells of part-time work and non-employment.9 It also includes workers who re-enter

the sample after having a missing firm, industry, or occupational spell.10

Descriptive statistics of the main samples used in the analysis are provided in Appendix

Table A-1. The results reported in the body of the paper are mainly based on the Small Sample

that contains approximately 400, 000 observations. The results based on the Large Sample that

includes approximately 1.3 million observations are reported in Appendix A5.3. We have also

verified that all the results hold for the “intermediate” samples that impose some but not all of

the restrictions of the Small Sample.

2.2 U-shapes in the Probability of Occupational Switching

In this section we present evidence of U-shapes in the probability of occupational switching. For

each worker that we observe in a given year of our sample, we compare his wage to the wages

of the other workers in the same occupation in the same year. This gives us this worker’s rank

in the wage distribution of his occupation. That is, it gives the fraction of other workers in the

8Workers are allowed to be either unemployed or out of the labor force up to two years after graduation without
being dropped from the sample.

9We treat part time work as non-employment.
10We exclude observations with missing occupational or firm affiliation data. After an observation with missing

occupation (firm) affiliation we cannot reliably calculate occupational (firm) tenure until the worker is observed
switching occupations (firms). Upon an occupational (firm) switch the corresponding tenure is set to zero and
from that point on the observations are included into the sample. For example, a worker who is a cook in period
t, has missing occupation in period t + 1, is a cook in period t + 2, and a truck driver in period t + 3, will be
included in the sample in period t and again in period t + 3 − the two observations with reliable occupational
tenure information.
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(a) Distribution of raw wages within occupation
and year.

(b) Distribution of wage residuals.

Figure 1: Non-parametric plot of probability of switching occupation by worker’s percentile in
the relevant wage distribution.

same occupation that earn lower wages than him this year. We plot the probability of switching

to a new occupation in the following year against this rank. Figure 1(a) is a non-parametric plot

(from a kernel smoothed local linear regression with bandwidth of 5 percentiles) of the probability

of switching out of an occupation as a function of a worker’s position in the wage distribution in

that occupation in a given year.11 The probability of switching occupation is clearly U-shaped

in wages. It is the workers with the highest or lowest wages in their occupations who have the

highest probability of leaving the occupation. The workers in the middle of the wage distribution

of their occupation have the lowest probability of switching occupations.

Figure 1(a) is based on raw wage data. Figure 1(b) indicates that we also observe a U-shaped

pattern of occupational mobility in the position of the worker in the distribution of residual wages

in his occupation in a given year. We generate residual wages by estimating a standard wage

regression

lnwijt = Xijtβ + εijt, (1)

where wijt is real hourly wage of an individual i working in occupation j in period t. The

explanatory variables in X include calendar year dummies, third degree polynomials in general

experience, occupational tenure, industry tenure, a second degree polynomial in firm tenure,

the sequence number of occupational spell, education, marital status, union membership, and

regional dummies. These wage regressions are estimated separately for each occupation.12

11The occupations are restricted to include a minimum of ten workers per year in order to find the percentiles
of the wage distribution within an occupation. The confidence intervals are pointwise estimates from 60% of the
sample.

12Figure A-1 in Appendix A5 shows that excluding firm and industry tenure or dummies for the sequence
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(a) Overall. (b) For different years after graduation.

Figure 2: Non-parametric plot of probability of switching occupation by worker’s percentile in
the distribution of raw wages within occupation, year, and years after graduation.

The U-shaped pattern of mobility is also evident in Figure 2(a) where we plot the probability

of switching out of an occupation against worker’s rank in the distribution of wages within

occupation, year, and among workers with the same number of years after graduation. That is,

we compute the rank of the individual in the distribution of wages of workers who completed

their education in the same year and work in the same occupation in a given year. Figure 2(b)

separately graphs occupational mobility for workers who graduated 1, 2, 4, and 6 years ago.

While the rate of occupational mobility generally declines with labor market experience, the

U-shaped pattern of occupational mobility is pronounced for all years after graduation.

In Appendix Figure A-5 we show that all the findings reported above are similar when

computed on the Large Sample that includes workers in the public sector and allows for spells

of non-employment and part-time work.

To assess the prevalence of U-shaped pattern of occupational mobility we compute the frac-

tion of occupations featuring U-shapes and the fraction of workers employed in these occupations.

Computing these statistics requires enough workers in each occupation in each year to accurately

predict the probability of changing occupation in different parts of the wage distribution of that

occupation. Thus, we restrict the sample to occupations that include at least 100 workers in

a given year. Separately for each occupation, we estimate the probit regression of the prob-

ability of switching occupation on a 2nd degree polynomial in worker’s percentile in the wage

distribution within occupation and year, i.e. Pr(switch) = Φ [α + β · perc+ γ · perc2]. The

partial effect of the wage percentile on the probability of switching occupation is ∂Pr(switch)
∂perc

=

number of the occupational spell from the wage regression does not qualitatively affect the results. Appendix
Figures A-2 to A-4 illustrate that the U-shaped pattern of mobility is robust to alternative bandwidths choices.
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(a) Distribution of raw wages within occupation and
year. Average wage in occupation from population.

(b) Distribution of wage residuals. Average wage in
occupation from time constants in wage regression.

Figure 3: Non-parametric plot of direction of occupational mobility, conditional on switching
occupation, by worker’s percentile in the relevant wage distribution before the switch.

φ (α + β · perc+ γ · perc2) (β+2γ ·perc). The U-shaped pattern implies that this derivative eval-

uated at perc = 0 must be negative, that is φ (α) (β) < 0. Similarly, the U-shaped pattern also

implies that the derivative evaluated at perc = 1 must be positive, i.e., φ (α + β + γ) (β+2γ) > 0.

In our Small Sample, 65% of occupations (employing 83% of workers) satisfy both of these cri-

teria when percentiles are defined in raw wages. If percentiles are defined in wage residuals,

75% of occupations (employing 86% of workers) satisfy these criteria. In our Large Sample, 71%

of occupations (employing 86% of workers) satisfy both of these criteria when percentiles are

defined in raw wages. If percentiles are defined in wage residuals, 83% of occupations (employing

92% of workers) satisfy these criteria.

2.3 U-shapes in the Direction of Occupational Switching

In this section we document another prominent feature of the data: conditional on changing

occupation, workers with higher (lower) relative wages within their occupation tend to switch to

occupations with higher (lower) average wages than the average wage in their current occupation.

We first find the average wage of all occupations in a given year in order to determine the ranking

between occupations. Similarly to our analysis of probability of occupational switching, we rank

occupations based on their raw wages or residual wages adjusted for worker characteristics. To

obtain the ranking based on raw wages, we find the average real wage of all full-time private-sector

workers in a given occupation in a given year.13 To obtain the ranking based on residual wages,

13Note that this is a bigger sample than our selected sample, which only consists of workers who graduated
after 1980 and who never worked in the public sector, worked part-time, etc. The results are, however, robust to
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(a) Overall. (b) For different years after graduation.

Figure 4: Non-parametric plot of direction of occupational mobility, conditional on switching
occupation, by worker’s percentile in the distribution of raw wages within occupation, year, and
years after graduation before the switch.

we use our selected sample to run a similar wage regression as in Equation 1 for each occupation

where we include time dummies in the regression (without the intercept). We interpret the

coefficients on these time dummies as the average occupational wage in a given year, adjusted for

human capital accumulation of workers in the occupation as well as other worker characteristics

such as education, regional dummies, and marital status.

Figure 3(a) plots the probability of switching to an occupation with a higher or lower average

wage as a function of the worker’s position in the wage distribution of the occupation he or she is

leaving. The sample on which the figure is based consists of all workers who switched occupation

in a given year and occupations are ranked based on the raw average wages. Figure 3(b) presents

corresponding evidence when occupations are ranked based on residual wages and the direction

of occupational mobility is plotted against the percentile in the distribution of residual wages

within an occupation the worker is switching from. The evidence contained in these figures

suggest that, conditional on switching occupations, the higher relative wage a person has in his

occupation before the switch, the higher is the probability that she will switch to an occupation

with a higher average wage. Similarly, the lower relative wage a worker has in his occupation

before the switch, the higher is the probability that he will switch to an occupation with a lower

average wage than in the occupation he switches from.

Figure 4(a) illustrates that similar results hold if we further condition on workers position

in the distribution of wages in his occupation in a given year and among people with the same

only looking at the average wages in our selected sample.

14



number of years since graduation. This figure is comparable to Figure 3(a) in that occupational

average wages are calculated from raw wages of the population in the occupation in a given year.

Finally, Figure 4(b) shows that the direction of occupational mobility is similar for individuals

who graduated 1, 2, 4, or 6 years prior.

Appendix Figure A-6 illustrates that all these patterns are also observed on the less restrictive

Large Sample.

2.4 Discussion of Empirical Evidence

2.4.1 U-shapes of Occupational Mobility within and between Firms

Our findings remain robust if we separately consider occupational switches who stay with their

firms and occupational switchers who change firms as well. In both samples the probability

of switching remains U-shaped in the position of the worker in the wage distribution of her

occupation. Moreover, in both samples mobility is directional so that the relatively high (low)

wage workers in their occupation tend to switch to occupations that pay on average higher

(lower) wages. While the average probability of switching occupations is higher among those

who switch firms than among those who stay with the same firm, possibly because occupational

switching often necessitates switching firm if the new occupation is not represented in the old firm,

the directional switching probabilities are virtually indistinguishable between the two samples.

Figures 5 and 6 summarize this evidence when worker relative position in the wage distribution

is determined based on raw wages. Appendix Figures A-9 and A-10 summarize this evidence

when worker relative position in the wage distribution is determined based on wages residuals.14

These results suggest that unemployment is not the main driver of the occupational switch-

ing. There is sizable rate of occupational mobility within firms in Denmark, and this mobility

exhibits similar patterns as those for the entire population of workers. High occupational mo-

bility within firm has also been documented for the U.S. by Kambourov and Manovskii (2008).

Moreover, a non-trivial fraction of workers who stay with the same firm switch to occupations

that on average pay less to their workers.

This raises the question whether switches to lower-ranked occupations within a firm are

indeed associated with lower wage growth for the individual worker, or whether they are just

labels that are inconsequential for the actual wage and position that the individual workers has

within the firm. Appendix Table A-2 contains evidence that the consequences for workers’ wage

14We use worker’s position in the overall wage distribution to plot these figures (i.e., the same distribution on
which our unconditional on firm switching findings were based). An alternative is to define worker position in the
wage distribution of the subsample he belongs to (i.e., firm switchers or firm stayers) and plot the probability of
switching and the direction of switching against this rank. Qualitatively, this does not affect our findings.
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Figure 5: Non-parametric plots of probability of switching occupation and of direction of occu-
pational mobility conditional on switching firms by worker’s percentile in the distribution or raw
wages.

growth are substantial both for workers that stay within the same firm as well as for those

that switch firms. Among workers who stay with their firm, those who move to higher-ranked

occupations see significantly higher wage growth than those who stay in the same occupation.

Those workers who move to lower-ranked occupations see a significantly lower wage growth than

those who stay in the same occupation. These patterns are similar for workers switching firms

although the wage changes for this group of workers are somewhat larger.

2.4.2 Alternative Occupational Classifications

In this section we explore robustness of our findings to a number of alternative ways to define

occupations. We begin by considering 1-, 2-, and 3-digit occupational classifications and compare

the results to the 4-digit classification used in our main analysis. Figure A-11 in Appendix A5.5

illustrates that our results are robust to using alternative occupational classifications. While

the level of mobility falls as occupational classifications become coarser, the U-shaped pattern of

mobility remains unaffected. This provides further indication that a considerable part of mobility

is driven by movements across occupations that can be vertically ranked which is clearly the case

at the 1-digit level.

A potential concern is that some 4-digit occupations may not be sufficiently clearly dif-

ferentiated (e.g., “Primary education teaching professionals” and “Primary education teaching

associate professionals”). This may result in some spurious re-classification of workers’ occupa-

tions because of reporting errors or when a worker continues to perform essentially the same task

but gets re-classified because of a change in an institutional setting (such as teaching a different
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Figure 6: Non-parametric plots of probability of switching occupation and of direction of occu-
pational mobility conditional on staying with the firm by worker’s percentile in the distribution
of raw wages.

class level). To address this concern we perform the following experiment. We access the Statis-

tics Denmark’s web page that firms can use to search for the correct occupational category of

their employees. Typing in a description of the tasks performed by an employee into a search

engine provided on this web page, returns one or more 4-digit occupational codes related to the

query. For example, if we search for the word “painter,” four distinct 4-digit occupations are

returned. These are “Painter and related work,” “Varnisher and related painters,” “Glass, ce-

ramics, and related decorative painters,” and “Sculpture, painters and related artists.” Similarly

the search for the word “accountant” or “accounting” returns three 4-digit occupations, which

are “Accountants”, “Bookkeepers,” and “Accounting and bookkeeping clerks.” We go through

all 4-digit occupations, excluding managers, and search for the word that describes the given

occupation. We then group together all occupations returned by the search engine. This means

that a switch from “Accountant” to “Bookkeeper” or to “Accounting and bookkeeping clerks”

will not be registered as an occupational switch. In Figure 12(a) in Appendix A5.6 we plot the

probability of switching across these occupational groups as a function of the worker’s position

in the wage distribution of their occupation.15 We find that the U-shaped mobility patterns are

robust to this re-classification of related occupations, while the level of occupational mobility is

naturally somewhat lower.

15We keep the wage percentiles from the 4-digit occupations rather than the new defined occupational groups
because the groups are not in a “closed relation.” As an example, an “Accountant” is grouped with “Account-
ing and bookkeeping clerks” who, in turn, are grouped with “Administrative secretaries and related associate
professionals.” However, “Accountants” are not grouped with “Administrative secretaries and related associate
professionals.”
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To assess whether our finding that workers with relatively high wages are more likely to leave

their occupations is predominantly driven by promotions to managerial occupations we perform

the following two experiments. First, we reclassify all managers as one occupation. Second,

we exclude all managers from the sample. The results, plotted in Figures 12(b) and 12(c),

respectively, indicate that U-shaped pattern of mobility is not mainly driven by movements in

and out of managerial occupations.

Finally, in Figure 12(d) we plot the mobility patterns on the sample that excludes “... not

elsewhere classified” occupations (their codes end with the number “9”). The U-shaped mobility

patterns are not affected by this change in the sample.

2.4.3 The Effects of Measurement Error

While the occupational affiliation data we use is generally regarded to be highly reliable, some

coding error might be present. Since the occupational code is provided to Statistics Denmark by

the firm it is more likely for a worker’s occupational affiliation to be miscoded when the worker

switches firms. However, we have just seen that the U-shapes are robust to workers switching

occupation conditional on switching firms as well as workers switching occupation conditional on

staying with the same firm. Similarly, the direction of occupational mobility is also unchanged

when conditioning on occupation and firm switchers or conditioning on occupation but not firm

switchers. If measurement error were sizable, we would expect switches across firms to be more

random and have a flatter curve than switches within firms. We do not find any evidence

of this. These results suggest that measurement error is unlikely to substantially affect our

findings. Moreover, we have also seen that grouping occupations together based on the similarity

of their descriptions also did not affect our findings, again suggesting only limited possibility for

measurement error to play an important role.

To further investigate the potential role of the measurement error we document the patterns

of mobility for workers whose occupational affiliation is stable over several time periods and

therefore less prone to possible temporary coding errors. When considering whether a worker

switches occupation between periods t and t+ 1 we now only consider workers who have been in

the same occupation for at least the two years t− 1 and t and then stay in the same occupation

for at least the two years t + 1 and t + 2. We also consider workers with at least three years of

occupational affiliation before and after the switching point. The shape and direction of mobility

for these workers is reported in Figures A-13 through A-16 in Appendix A5.7. We find that

our results remain robust. Similar results are obtained on the samples of occupational switchers

within and across firms.
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2.4.4 Focus on Occupational Mobility

Our primary focus is on worker mobility across occupations which were shown in prior work to be

major predictors of individual earnings. We have repeated the analysis on industries and found

that mobility across industries does not exhibit U-shapes. Instead, it is the poor matches in the

bottom part of the wage distribution in an industry that are more likely to be destroyed. This

difference between occupation and industry switching might be due to the fact that industries

have less of a natural ladder. Workers that find out that they are very talented may not change

industries, but are likely to switch to more demanding occupations. It is also very interesting

to assess the extent and patterns of sorting across firms. Unfortunately we cannot apply our

methodology at the firm level because firms in Denmark are generally too small for this purpose,

especially since one would presumably need to condition on workers’ occupation.

2.4.5 Summary

To summarize the evidence presented so far, the probability of switching out of most occupations

is U-shaped in the position of the worker in the wage distribution of that occupation. Workers

with high wages relative to their occupational average switch to occupations with higher average

wages. Workers with low wages relative to their occupational average switch to occupations with

lower average wages.

The fact that high paid workers tend to switch to occupations that on average pay more

suggests a model in which absolute advantage (high pay) goes hand in hand with comparative

advantage in the more productive occupations (switching to better occupations). This is called

positive sorting in traditional Roy models, and will be a central element of the following theory.

We confront additional implications of the theory with the data as we derive them.

3 The U-shapes of Occupational Mobility: Theory

In this section we present a model of vertical sorting, where gross mobility arises since workers

initially have only limited information about their ability and learn about it over time. In the

model it is efficient that workers of higher ability work in the occupations where ability is most

valued. If a worker learns that he is much better (or worse) than expected, he adjusts (has to

adjust) to an occupation commensurate of his ability.

We show that the combination of learning and sorting is sufficient to generate the qualitative

patterns that we find in the data. To highlight the basic impact of these two features, we abstract

from other factors such as human capital accumulation and costs of occupational switching. We
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discuss in the following section how these features can be integrated. They do not offset the

qualitative implications of sorting, but we discuss them because we expect them to be important

for any quantitative assessment of the theory. Finally, we consider the validity of some secondary

implications of the theory.

3.1 The Model

Workers: Workers choose employment in different occupations over time. Time is discrete and

runs forever. Each period a unit measure of workers enters the labor market. The index for an

individual worker will be i throughout. Each worker is in the labor force for T periods. Workers

are risk-neutral and discount the future with a common discount factor β. Each worker has

an innate ability level ai that is drawn at the beginning of his life from a normal distribution

with mean µa and variance σ2
a. For the baseline model without human capital accumulation

we assume that this ability remains constant throughout worker’s life (we relax this in Section

4). The amount of output that a worker can produce depends on his ability. In particular, he

produces

Xi,t = ai + εi,t (2)

in a given period t of his life, where εi,t is a normally distributed noise term with mean zero and

variance σ2
ε . Workers do not know their ability (and neither do firms), but workers observe the

output they produce. We assume that the worker observes an initial draw after finishing school,

i.e., before entering the labor market.16

Over time, workers learn about their true ability. Let φa = 1/σ2
a and φε = 1/σ2

ε denote

the precision for each distribution, which is defined as the inverse of the variance. Define the

cumulative precision of a worker at the beginning of his tth year in the labor market as φt :=

φa + tφε. Initially every worker only knows that his ability is distributed with mean A0 = µ0 and

precision φ0 = φa. Standard results on updating of normal distributions establish that his belief at

the beginning of every period t > 0 of his life is normally distributed with mean Ai,t and precision

φt, where the mean is determined successively by the output realizations that he observes. After

observing some output realization Xi,t the new mean is given by the precision-weighted average

of the prior mean and the output observation:

Ai,t+1 =
φt
φt+1

Ai,t +
φε
φt+1

Xi,t. (3)

16In general we allow this error term to be distributed with a different variance σ2
0 that might not coincide with

the variance of the labor market error term σ2
ε . While our exposition is presented for σ2

0 = σ2
ε , the more general

expressions can be obtained by adjusting the cumulative precision defined below as φt = φa + φ0 + (t− 1)φε.
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From the point of view of the individual, this evolution of the posterior is a martingale with

decreasing variance: The weight on the prior increases the more observations have already been

observed in the past, i.e., the higher is t (see, e.g., Chamley (2004)). Correspondingly, the

weight on the most recent observation decreases with years in the labor market. For all practical

purposes, (3) can be interpreted as some exogenous change in workers ability, even though the

learning interpretation appears to be particularly natural. In the following we will refer to Ai,t+1

as the expected ability or simply as the belief, and drop the person-identifier i and/or the time

identifier t when there is no danger of confusion.

For completeness, we note two points. First, let Gt(At+1|At) denote the distribution of next

period’s belief for a worker with current belief At. It is normal with mean At.
17 In particular,

its density gt is single-peaked and symmetric around its peak at At, and shifting the prior

mean At simply shifts the entire distribution about the posterior horizontally in the sense that

gt(At+1|At) = gt(At+1 + δ|At + δ) for any δ. This is all we need for most proofs.18 We call

the latter property lateral adjustment. Second, the cross-sectional distribution Ft(A) of beliefs

among workers that start the t′th period of their working life can be computed from (3) and

is independent of any choices that agents make.19 Therefore, the measure of agents with belief

below A accross all cohorts at any point in time, F (A) =
∑T

t=1 Ft(A), can be computed prior to

any analysis of occupational choice. This simplifies the specification of an equilibrium.

Occupations: There are a finite number of occupations, indexed by k ∈ {0, 1, ..., K}, each

with some fixed measure γk of available jobs. We treat the number of jobs as exogenous in this

exposition, yet Appendix A2 discusses how endogenous entry can be accommodated (limited

entry and associated competition among workers for scarce jobs will be most important in Section

4.1 to explain the mobility patterns when occupational productivities change).

Each unit of the good (or service) that is produced sells in the market at some exogenously

17Conditional on knowing the true ability a of a worker, the output Xt is distributed normally with mean a and
precision φε, i.e. Xt ∼ N(a, φε). Yet the ability is not known. Rather, the individual only knows his expected
ability At while his true ability is a draw a ∼ N(At, φt). Integrating out the uncertainty over his ability implies
that output is distributed X ∼ N(At, φεφt/φt+1). We are not interested in the output per se, but in the update
At+1 = (φεXt + φtAt)/φt+1 as a function of output. This linear combination implies that that the posterior
distribution Gt(At+1|At) is a normal with mean At and precision φtφt+1/φε, i.e. At ∼ N(At, φtφt+1/φε).

18For one proof (Proposition 4) we also need concavity of gt(At+1|At) in At+1 locally for At+1 near At, which
holds for the normal distribution.

19At the beginning of period t the workers have observed t output observations (one in school and t − 1 in
the labor force). The only relevant information for the worker is the average X̄ of these output realizations.
Conditional on a this is distributed normally with mean a and precision tφε. Since a is not known, an agent
with prior µa faces realizations of X̄ that are normal with mean µa and precision tφεφa/φt. Since the update is
At = (tφεX̄ + φaµa)/φt, F

t is normal mean µa and precision φtφa/(tφε).
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given price Pk. Therefore, worker i employed in a job of type k generates revenue

Rki = PkXi. (4)

Equivalently, we can interpret Pk as the productivity in terms of efficiency units of the labor (at

a common sales price of unity). We rank occupations in order of increasing productivity such

that PK > ... > Pk > ... > P0 = 0. Therefore, any given worker produces more in a higher ranked

occupation. One can view the lowest ranked occupation as home production. An output signal is

observable even in home production, and home production is available to everybody (more jobs

than population size: γ0 ≥ T ). All other jobs are assumed to be scarce (less jobs than workers

with positive ability:
∑K

k=1 γk < T − F (0)).20

Wages: We consider a competitive economy without matching frictions. The only frictions

are information frictions in the sense that workers’ actual abilities are not known. There are (at

least) two ways to think about wage-setting in our economy. Wages might be output-contingent

contracts w(X) that specify different wages based on the particular output that is realized. If a

firm wants to obtain profits Πk it can simply offer the wage contract

wk(X) = PkX − Πk (5)

to any worker who is willing to take this contract. Since workers are risk-neutral, they choose

the occupation with the highest expected wage. Therefore, it is not necessary the firm has as

much information as the workers, since workers would self-select. Since workers are risk-neutral,

the relevant sorting criterion for them is their expected wage given their belief A about their

mean ability:

Wk(A) = PkA− Πk. (6)

Alternatively, if the firm has the same information as the worker it can directly pay expected

wages according to (6). In this case the firm absorbs all the risk. It would need to have the same

information as the worker because otherwise it might attract workers with low expected abilities

who try to get a high pay. Given risk-neutrality, whether firms or workers face the output risk

does not affect the occupational choices by workers because in either case workers only care about

expected wages (given by (6)), but observed wages differ according to the specification and could

potentially lead to different assessments of observed patterns. We will show our main qualitative

results under both wage setting regimes. In fact, firms might pay workers according to some

weighted average of (5) and (6) to provide both incentives for self-selection as well as insurance

20Otherwise the lowest occupations would not attract any workers and would simply not be observed in the
data.
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to workers, and our arguments can easily be extended to show that our main propositions hold

for any such convex combination.

Equilibrium: We are considering a standard stationary competitive equilibrium in this match-

ing market between occupations and workers. As market prices one can use either profits or

wages, as one determines the other via (5) [or (6)]. It is notationally more convenient to focus on

the profits. Stationary means that the entrepreneurs’ profits Π = (Π1,Π2, ...,ΠK) and the asso-

ciated wage offers are constant over time. The tractability of the baseline model arises from the

fact that every period workers can costlessly re-optimize and therefore the sequence of decisions

that maximize their life-time income coincides to the sequence of decisions that maximizes their

payoff in each period. Since the cross-sectional distribution of beliefs F (A) remains constant, we

can use standard tools for the analysis of static matching models. In particular, a worker will

work in occupation k rather than k−1 if the expected wage is higher: PkA−Πk ≥ Pk−1A−Πk−1.

There is exactly one level of expected ability, call it Bk, at which this holds at equality:

Bk ≡
Πk − Πk−1

Pk − Pk−1

, for k ∈ {1, .., K}. (7)

Therefore, workers optimally choose to work in occupation k if their expected ability is within

the interval [Bk, Bk+1), where we define B0 ≡ −∞ and BK+1 ≡ ∞.21 Market clearing then means

that the number of workers F (Bk+1)− F (Bk) that would like to work in occupation k coincides

with the number of jobs γk available in this occupation:

γk = F (Bk+1)− F (Bk), for k ∈ {1, ..., K}. (8)

The system (7) and (8) can easily be solved recursively: Summing (8) accross all k and noting

that F (BK+1) equals the total popluation T , we get
∑

k∈{1,...,K} γk = T−F (B1) which determines

B1. Then successive application of (8) yields the remaining cutoff levels (B2, ..., BK). Since zero

productivity in the lowest occupation implies zero profit, (7) then delivers the profits of the firms

in the various occupations (Π1, ...,ΠK). To sum up:

Definition 1 An equilibrium is a vector of profits Π = (Π0, ...,ΠK) with Π0 = 0 and a vector of

optimal worker cutoff level (B1, B2, ..., BK) such that equations (7) and (8) hold.

21This sorting property is driven by the fact that our expected revenue function is supermodular, as highlighted
in the seminal contribution by Becker (1973). Nevertheless, there are revenue functions different from the one
that we assume that give rise to exactly the same wage patterns despite the fact that more able workers work
in less productive occupations (this arises for example when revenues are Rki = Pk + (1 − Pk)Xi, see Eeckhout
and Kircher (2009) for details). In general, what is important for our results is that there is some benefit from
sorting into the appropriate occupation given one’s skills, so that workers adjust their occupation as they learn
their type more precisely.
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3.2 Analysis: Shape and Direction of Occupational Mobility

Consider a worker who chooses occupation k in his tth year of labor market experience, and

earns wage W as in (6). Let Sk,t(W ) be the probability that this worker switches, i.e., that he

chooses a different occupation in t+1. We will use the superscript ”+” to indicate the probability

of switching to a higher occupation, and ”-” to indicate the probability of switching to a lower

occupation. Clearly Sk,t(W ) = S+
k,t(W ) +S−k,t(W ). Similarly, if wages are set by (5), then denote

the corresponding switching probabilities by lower-case letters sk,t(w), s+
k,t(w) and s−k,t(w).

To analyze the shape of the switching probability formally, we adopt the following definition.

Fix the cohort indicator t and the occupation k, and consider how the switching probability

changes in the wage.

Definition 2 (U-shapes) A function is U-shaped if it has local maxima at the boundaries of its

domain and one of these is a global maximum. A function is strictly U-shaped if it is U-shaped

and quasi-convex.

U-shapes capture the qualitative feature that switching probabilities increase towards each of

the ends of the domain, i.e., in the context of Sk,t(·) switching becomes more likely for workers

with low and high expected wages. Strict U-shapes additionally ensure that the switching prob-

ability increases monotonically from its interior minimum toward the extremes of the domain. A

particular property of a U-shaped function S is that g ◦S is also U-shaped whenever g is strictly

monotone. This has the practical relevance that it will not matter whether we refer to the actual

wage of a worker or to the rank of the worker in the wage distribution, since the rank is just a

monotone transformation of the actual wage.

It is easiest to highlight why the model generates U-shapes by looking at the case where

workers get paid according to expected ability (6). The wage directly reflects the worker’s

expected ability, as A = (W + Πk)/Pk. If a worker chose occupation k, it has to be the case that

his prior about his expected ability was within the relevant cutoffs, i.e., A ∈ [Bk, Bk+1). Next

period he will switch down only if his posterior falls below the cutoff Bk, he will switch up only if

his posterior falls above Bk+1, and overall he will switch if either of these two happens. Therefore

S−k,t(W ) = Gt(Bk|A), (9)

S+
k,t(W ) = 1−Gt(Bk+1|A) and (10)

Sk,t(W ) = Gt(Bk|A) + 1−Gt(Bk+1|A). (11)

Consider interior occupations, i.e., occupations k ∈ {1, ..., K − 1} that are not at the ex-

treme end of the spectrum. Since the distribution gt(A
′|A) is symmetric and quasi-concave, the
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Figure 7: Illustration of the proof of Propositions 1 and 2.

switching probability is lowest when the prior A is at the midpoint between Bk and Bk+1 and

increases the more the prior moves toward either side of the interval. Figure 7 illustrates this.

The solid curve is the density gt(A
′|A) of the posterior belief A′ for an agent with a prior belief

at the midpoint A = Bk := (Bk +Bk+1)/2. For this worker it is least likely that his posterior lies

outside the boundaries Bk and Bk+1. The dotted curve to the right is the density of the posterior

for a worker starting with a prior above Bk. He is more likely to switch because his posterior has

more mass outside the “stay” interval [Bk, Bk+1). This is particularly clear for large intervals:

agents with prior in the middle need very large shocks to induce them to leave, while agents on

the boundaries only need small shocks to induce them to switch to the adjacent occupation. The

following proposition establishes this for occupations of all sizes:

Proposition 1 (U-Shapes in Mobility) Consider some interior occupation k and cohort t.

The switching probability sk,t(w) is U-shaped; the switching probability Sk,t(W ) is strictly U-

shaped.

Proof. For the formal proof see Appendix A1.

For interior occupations, U-shapes are likely to persist even when we do not condition on

cohort t.22 For the extreme occupations of home production k = 0 and of k = K the switching

probability S(·, t) is also quasi-convex, but the minimum is at the extreme of the domain: In the

22 This can be easily proved for the wage setting process (5), because extreme wages reflect extreme updates
no matter what cohort the worker is in, and so switching probabilities approach one for extreme wages accross
cohorts. Under (6), there is still a tendency for U-shapes unconditional on cohort, yet it is possible to construct
examples where U-shapes do not hold for all occupations. The reason is that at the same expected ability older
workers have more precision and switch less. If young workers are mainly in the middle of the interval [Bk, Bk+1)
while old workers are more at one side, this composition effect between cohorts can lead workers with interior
abilities (and wages) to switch more than those with abilities that are a bit more to the side.
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case of home production workers at the bottom are least likely to switch since there is no lower

occupation to switch down to, while in the case of the highest occupation workers at the top are

least likely to switch because there is nothing better to move to.23 Therefore, U-shapes cannot

be derived in models that focus on two occupations only.

Next, we describe the direction of switching. Consider some interior occupation k. Intu-

itively, workers with high ability within this occupation and associated high average wages are

the ones that are most likely to have output realization that indicate that they are appropriate

for more productive occupations. This is visible in Figure 7 because the tail of the distribution

that exceeds the upper bound increases as the distribution is shifted to the right. Workers with

low belief about their mean ability are more likely to find out that they are not good enough

and should move to a less productive occupation. Such a switch might manifest itself through

firing if the employer has the same information as the worker, or as a quit due to the fact that

the wage in absence of high performance is not good enough in the current occupation. The

following proposition formalizes this intuition about switching behavior. It characterizes the

probability for upward and downward switches conditional on switching. If the switching prob-

ability Sk,t(W ) > 0, then the conditional probability of switching up is S+
k,t(W )/Sk,t(W ), and

similar for downward switches.24

Proposition 2 (Direction of Sorting) Consider workers of cohort t in interior occupation k

that switch. The higher ability workers are more likely to switch up and the lower ability workers

are more likely to switch down: s+
k,t(w)/sk,t(w) is increasing and s−k,t(w)/sk,t(w) is decreasing;

S+
k,t(W )/Sk,t(W ) is increasing and S−k,t(W )/Sk,t(W ) is decreasing.

Proof. We focus on the wage setting process (6); see Appendix A1 for (5). Recall that a worker

earns wage W only if he has belief A = (W + Πk)/Pk. By (10) we can write S+
k,t(W ) = 1 −

Gt(Bk+1|A) = 1−Gt(Bk+1−A|0), where the second equality follows from lateral adjustment. Since

Gt(·|0) is a CDF it is increasing, and so −Gt(Bk+1−A|0) is increasing in A, and thus in W. By a

similar argument S−k,t(W ) is decreasing in W . This immediately implies that S+
k,t(W )/(S−k,t(W )+

S+
k,t(W )) is increasing, while S−k,t(W )/(S−k,t(W ) + S+

k,t(W )) is decreasing.

Therefore, this simple model about learning one’s absolute advantage generates the main

predictions about sorting that we documented in the data.

23Proposition 2 provides a more general formal proof for this.
24If sk,t(w) = 0, then s+k,t(w) = s−k,t(w) = 0. In this case, notational consistency in the following proposition

requires a convention about conditional probabilities. In this case it is a convenient to define the conditional
probability of switching up or down as s+k,t(w)/sk,t(w) = s+k,t(w)/sk,t(w) = 1/2.
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3.3 Other Implications of the Model

In this section we derive and contrast with the data several additional implications of the model.

Before turning to some implications that are specific to our equilibrium theory, we review two

standard results from the learning literature. These have important implications for understand-

ing the earnings process. First, we point out that our learning model is obviously able to account

for the fact that switching probabilities decline with age, which is visible in, e.g., Figure 2(b).

Second, the model can reproduce the important empirical pattern that cross-sectional variance

in wages increases with labor market experience. This pattern has received much attention in

the literature, going back to, e.g., Mincer (1974). The fact that the learning model captures

these features so naturally makes it a strong candidate for modeling the process (3) by which At

evolves.

Younger workers of cohort t switch less often than older workers of cohort t′ > t, as long as

t′ is sufficiently large. This well-known result follows immediately from the fact that over time

worker’s information becomes more precise. Therefore, for any given belief A about one’s mean

ability and associated wage W , the likelihood that this prior will change substantially given the

new output realization is lower for older workers. That is, St(W ) is decreasing in t and older

workers switch less conditional on the same ability (same expected wage).25

If wages are paid according to expected ability (6), the cross-sectional variance in wages for

young workers (cohort t) is smaller than for older workers (cohort t′ > t). Exactly because

the information about each individual becomes more precise, the wages in (6) diverge for older

workers. Since the ability of young workers is not very precise, they get similar wages. (Think

about the extreme case in which initially there is no information about workers ability, and so all

workers obtain exactly the same wage in their first period of their working life.) As information

gets revealed in the output process, it becomes clearer which workers have high ability and

which have low ability, and the former get paid more while the latter get paid less. Thus, their

remuneration naturally fans out. Process (5) is analytically less tractable since the variance in

the distribution of mean ability is confounded with the variance in the output process, but the

result holds in the simulations we have conducted.26

25Since the distribution of abilities is different for older workers, it is theoretically possible that a particular
older generation t′ has abilities that are more concentrated around some switching cutoff Bk and therefore they
switch more than a younger generation t. This is not possible as t′ becomes large because information becomes
nearly perfect while concentration does not go up substantially around any cutoff given our normal distribution
assumptions, and we did not find any such effect in any of our simulations.

26Under (5), if there exists only one occupation the variance in wages would be unchanged as workers simple
obtain a wage equal to their innate ability plus shock, multiplied by P1. With multiple occupations, if workers
start mainly in occupation k initially most output realizations are multiplied by Pk, but later generations sort
better and low abilities get multiplied by smaller productivities Pk′ < Pk while higher abilities get multiplied by
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3.3.1 Other Implications of the Model: Theory

We also obtain additional predictions specific to our model by considering wages of workers of the

same cohort who switch occupations relative to those who stay in an occupation. It is clear that

our model can generate the pattern regarding the wage changes that we reported in Section 2.4:

upward switchers tend to see higher wage increases than workers who remain in the occupation,

who in turn see higher wage increases than workers who switch down. This immediately arises if

wages are set according to (6) but depends on parameters when wages are set according to (5).27

More robust predictions of the model that are independent of whether the wage setting process

is assumed to be given by (5) or (6) involve the comparison of wage levels between occupational

switchers and stayers.

When we compare wages of workers who start in the same occupation, but some switch and

some stay, we obtain the following prediction:

Proposition 3 Consider workers of the same cohort, and compare the wages in period t + 1

for those who stayed in occupation k with the wages of those workers who switched from k to k′

between periods t and t+ 1: The average wage of the stayers is higher than the average wage of

downward switchers (k′ < k), but is lower than the average wage of upward switchers (k′ > k).

Proof. The result follows immediately because expected wages are increasing in the belief about

one’s mean ability, and these beliefs are strictly ranked: workers who switch up do so because

their belief went up above Bk+1, while workers who stayed have a belief in [Bk, Bk+1], and workers

who switched down have a belief below Bk.

A less immediate implication arises when we compare switchers and stayers, but consider

those that end up in the same occupation. Here, the predictions are exactly reversed:

Proposition 4 Consider workers of the same cohort, and compare the wages in period t+ 1 for

those who stayed in occupation k′ with the wages of those workers who switched from adjacent

occupation k to k′ between periods t and t+1. Assume occupation k′ and its adjacent occupations

are not too large. Then the average wage of the stayers is lower than the average wage of

downward switchers (k′ < k′ + 1 = k), but is higher than the average wage of upward switchers

(k′ > k′ − 1 = k).

higher productivities Pk′′ > Pk, which tends to increase the variance.
27Wages set according to (6) strictly increase in ability. Since a worker only switches up if his ability improved

more than the ability for those people who stay, the wage of a worker who switches up improves more than for
those how stay. A similar argument applies to workers who switch down. This pattern is less obvious if wages are
set according to (5) because of reversion to the mean: a worker who had a particularly good shock will switch
up to get his output multiplied by a higher productivity but will likely not have such a good shock again (and
therefore not such high output) next period.
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Proof. See Appendix A1.

The logic behind this result is the following. Consider downward switchers. They enter the

new occupation from above, and their expected ability is more concentrated at the upper end of

interval [Bk′ , Bk′+1) relative to the expected abilities of the workers who were in this occupation

all along.

Thus, the predictions about the relative wages of stayers vs. switchers depend in an inter-

esting way on the definition of stayers. This provides us with observable implications that can

be verified in the data.

3.3.2 Other Implications of the Model: Evidence

To assess the empirical validity of the implication in Propositions 3, we compare the wage levels

of stayers to those of switchers in the period after the switch. Consider all workers in occupation

k in period t. In period t + 1 we compute the ratio of wages of workers who left occupation k

for a higher ranking occupation to wages of those who remained in occupation k between t and

t + 1. Similarly, we compute the ratio of wages of workers who left occupation k for a lower

ranking occupation in period t + 1 to wages of those who remained in occupation k between t

and t + 1. Next, we compute the average of these ratios across all occupations weighted by the

number of workers in each occupation who switched either up or down. Figure 8(a) presents the

results. The wage ratio of up-switchers over stayers is above 1, which indicates that the wages

in period t+ 1 of workers who switch up from t to t+ 1 is higher than the wage of workers who

stayed from period t to t+1. The wage ratio of down-switchers over stayers is below 1 indicating

that workers who switched to lower ranking occupations have lower wages after the switch than

workers who stayed in the same original occupation. This is consistent with the predictions of

Proposition 3. Figure 8(b) shows that the ranking implied by Proposition 3 remains consistent

with the data when we also condition on number of years after graduation in addition to being

in occupation k in period t.

To assess empirically the predictions of Proposition 4, we compare wages of switchers into

occupation k′ to wages of those who stayed in occupation k′ between t and t + 1. In Figure

9(a) we construct the weighted average of period t + 1 wage ratios of switchers into occupation

k′ over stayers in occupation k′. Figure 9(a) illustrates that workers who switched to higher

ranking occupations have lower wages after the switch than the stayers in the occupation into

which the up-switchers moved and that the opposite is true for workers who switched to lower

ranking occupations. Figure 9(b) illustrates that these patterns are robust to also conditioning

on the number of years after graduation.
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(a) Unconditional. (b) Conditional on the number of years after grad-
uation.

Figure 8: Weighted average of year t+ 1 ratios of real wages of workers who switch occupations
between years t and t+ 1 over workers who stay in the same original occupation in years t and
t + 1 by direction of the switch (i.e., whether the switch involves moving to an occupation that
pays more or less on average than the source occupation.)

Appendix Figure A-7 presents the results of these experiments on the Large Sample. The

predictions of Propositions 3 and 4 remain consistent with the data.

4 Extensions

In this section we discuss two important ways in which the model can be extended. For each

extension we depart from the baseline model laid out so far, even though it is easy to see how

the extensions can be combined.

First, we introduce changes to the productivity of occupations− and see that the competition

among workers for jobs implies that occupations with rising productivity attract and retain high

ability (high wage) workers that drive out low ability (low wage) workers. We show that this

pattern is indeed present in the data for the occupations with fastest wage growth. Opposite

predictions arise for declining occupations, and these are also confirmed in the data. This captures

the behavior for the bulk of the occupations for which we did not find U-shapes.

Second, we allow for human capital and switching costs. We show that general human

capital introduces a career-ladder motive: as human capital grows workers switch into better

occupations. In the absence of learning this would only induce upward mobility, the presence of

learning then still induces downward mobility. Occupation specific capital acts as a particular

form of switching cost as it is lost when leaving the occupation. We show how this can be

accommodated, and then highlight numerically that the empirical switching patterns documented
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(a) Unconditional. (b) Conditional on the number of years after grad-
uation.

Figure 9: Weighted average of year t+ 1 ratios of real wages of workers who switch occupations
between years t and t + 1 over workers who stay in the same destination occupation in years t
and t + 1 by direction of the switch (i.e., whether the switch involves moving to an occupation
that pays more or less on average than the source occupation.)

above are robust under plausible values of human capital accumulation processes.

4.1 Changing Occupational Productivities

4.1.1 Mobility in Response to Changing Occupational Productivity: Theory

So far we have considered a stationary environment where the only reason for a change of occu-

pation is learning about one’s own ability. This generates mobility even though the productivity

of all occupations remains constant over time. Nevertheless, some occupations such as computer

programmers in the 1990s have seen substantial wage increases for their workforce (conditional

on staying in the occupation, so excluding obvious selection effects), while other occupations

such as textile machine operators have seen substantial wage declines.28

In this section we will allow occupational productivities to change over time. As mentioned,

occupations with high productivity growth retain only their high ability workers while their low

ability workers are driven out because their skill is no longer appropriate, and vise versa for

declining occupations. In the subsequent subsection we confirm empirically that occupations

with large productivity changes exhibit this mobility pattern. This accounts for most of the

occupations that do not feature U-shapes in the probability of switching.

We note here that these insights arise because we consider an equilibrium model where

workers compete with each other for jobs. This is very different from the standard analysis in

28Kambourov and Manovskii (2009a) measure the magnitude of changes in occupational productivities.
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the Roy-type models, where each worker has the decision-theoretic task of choosing the most

appropriate occupation without concern for the choices of the other workers. In such a setting, a

more productive occupation attracts more workers but does not loose any of its existing workers

(we discuss this further in Section 5.1).

To make these points theoretically, we need to slightly expand the notation. Denote calendar

time by τ and index occupations by a name r ∈ {0, 1, ..., K} instead of their rank in terms of

productivity (since the rank is now changing), with r = 0 still being home production with

constant productivity of zero. We retain the same notation as in the previous section, with the

adjustment for the name of the occupation and an additional superscript indicating calendar time.

For example, P τ
r > 0 denotes the productivity of occupation r at calendar time τ . Productivities

can be deterministic functions of calendar time, but are also allowed to be realizations of some

stochastic process. Stochasticity does not affect the analysis since workers can still costlessly

change occupations each period. Importantly, the cross-sectional distribution F of beliefs remains

unchanged because it does not rely on occupational choice. Therefore, the model can be solved

period by period as in the previous section. We assume that each period productivities can be

strictly ordered.

We also continue to assume that the measure γr of entrepreneurs in each occupation r

remains constant, although our results are robust as long as entry is sufficiently inelastic to

induce competition among workers for scarce jobs.29 Inelastic labor demand might arise, for

example, because a job in an occupation needs a particular type of physical capital that is not

easily adjusted when the demand for the services of the occupation changes. See the further

discussion in Appendix A2.

Given the productivities that prevail in period τ , let Bτ
r and B

τ

r be the lower and upper

bounds on the ability (analogous to bounds Bk and Bk+1 in the preceding section). That means

that workers with beliefs in [Bτ
r , B

τ

r) choose to work in occupation r. Equation (8) readily reveals

that these beliefs depend exclusively on the number of jobs that offer lower wages, not on the level

of productivity per se. It will therefore be convenient to define Γτr as the measure of all jobs that

have weakly lower productivity than the jobs in occupation r in period τ. We call Γτr the position

of occupation r in the distribution of productivities. When the position of a specific occupation

r stays constant for two periods, i.e. Γτr = Γτ+1
r , it follows immediately that the cutoffs that

determine who stays in the occupation remain constant, i.e. Bτ
r = Bτ+1

r and B
τ

r = B
τ+1

r , and

the switching behavior of workers in occupation r remains essentially unchanged compared to

29We discuss entry in the Appendix A2. When entry is completely elastic, the model resembles the Roy (1951)
model, since each worker essentially decided by himself whether to “buy” a job in occupation k, independent of
the choices of all other workers.
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the baseline model analyzed in the previous section.30 Switching is maximal at both ends of the

earnings (and ability) spectrum, and is lowest at intermediate income levels.

When an occupation improves in rank between period τ and τ+1 in the sense that Γτ+1
r > Γτr ,

the bounds on ability improve in the sense thatBτ+1
rτ (k) > Bτ

rτ (k) andB
τ+1

rτ (k) > B
τ

rτ (k). An immediate

implication of the increased bounds is that workers who stay in the occupation between the two

periods are a positive selection of the initial workforce. Therefore, these stayers improve their

position in the aggregate cross-occupational wage distribution. This allows us to use the wage

increase of stayers relative to the increase of other workers as a measure of the productivity gain

of an occupation relative to the productivities of other occupations.

Another implication of the increased bounds of an improving occupation is that high ability

workers join while low ability workers are driven out. This has direct consequence of the patterns

of switching that we observe. In particular, in rising occupations high wage workers tend to stay

while low wage workers tend to leave. The following proposition is proved for the case where

firms absorb the uncertainty of the production process, but a proposition with similar content

can be proved when workers are residual claimants.31

Proposition 5 Consider an occupation r with a sufficient relative rise in productivity such that

Γτ+1
r ≥ Γτr + γr. If wages are set according to (6), the probability of switching out of occupation r

between and τ and τ +1 decreases with higher wages for workers in the same cohort. The reverse

holds for a sufficient decline in relative productivity such that Γτ+1
r ≤ Γτr − γr.

Proof. We prove the result for a rising occupation; analogous steps establish the result for a

declining occupation. Wages in (6) rise in the prior A, and the distance |Bτ+1
r − A| decreases

in A for all workers that choose occupation r in period τ [since A ≤ B
τ

r and B
τ

r ≤ Bτ+1
r when

Γτ+1
r ≥ Γτr + γr]. Thus, workers with a higher prior are closer to the region [Bτ+1

r , Bτ+1
r ) where

they stay in r, and therefore it is more likely that their posterior falls into this region (which

follows formally from single-peakedness and lateral adjustment of the update Gt).

This implies that rising occupations with particularly fast growth in wages of stayers (i.e.,

occupations whose rank is sufficiently increasing) exhibit switching patterns where mainly the low

30For the baseline model in Section 3 where productivities do not change, define ŝk,t(X) = sk,t(PkX − Πk)

and Ŝk,t(A) = Sk,t(PkA−Πk). This gives the switching probabilities based on output/ability rather than on the

wages. It can be shown that ŝk,t(X) and Ŝk,t(A) are invariant to the exact productivity level of occupation k, as
long as it retains the same position among the occupations.

31For wages set according to (5) we can prove the following (proof available upon request). Consider an
occupation r that rises sufficiently in position, Γτ+1

r ≥ Γτr + γr, and consider the probability of staying in r
between τ and τ + 1. Then only workers who had wages above the occupational mean in τ stay, while all lower
wage workers leave. The reverse holds for a sufficient decline in position, Γτ+1

r ≤ Γτr − γr.
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(a) Distribution of raw wages within occupation and
year. Growth rates of average wage in occupation
from population.

(b) Distribution of wages residuals. Growth rates
of average wage in occupation from time constants
in wage regression.

Figure 10: Non-parametric plot of probability of switching occupation by worker’s percentile in
the relevant wage distribution. For the fastest growing 10% of occupations, the slowest growing
10% of occupations, and the remaining 80% of occupations.

wage workers switch out and the higher wage workers stay, and the opposite holds for declining

occupations.

4.1.2 Mobility in Response to Changing Occupational Productivity: Evidence

Consistent with the theory, in the data we find that lower paid workers in a given occupation tend

to leave it when occupational productivity rises, while higher paid workers in a given occupation

are more likely to leave it when productivity of the occupation declines. We examine this in the

data by studying occupations with different growth rates of the average wage of workers who

stay in the occupation between years t and t + 1 (to avoid obvious selection effects on average

wages). Similar to Section 2.3 we compute the average wage based on either the raw wages or

wage residuals. For each of these two notions of the average wage, we calculate the percent

increase between each two consecutive years between 1995 and 2002.

Figure 10 plots three groups of occupations, separated by the growth rates of average wages

of stayers between years t and t+1. The first group consists of the 10 percent of occupations with

the lowest growth rates, the second group is the 10 percent of occupations with the highest growth

rates, and the third group is the occupations with growth rates in average occupational wages

in the middle 80 percent. For the three different occupational groups we plot the probabilities

of switching occupation as a function of the workers’ position in wage distribution in their

occupation in year t. Figures 10(a) and 10(b) show that workers in occupations with the lowest

growth rate of wages between t and t + 1 have a higher probability of leaving their occupation

34



between t and t+ 1 if they are from the upper end of the occupational wage distribution in year

t. Workers in the fast growing occupations have a higher probability of leaving their occupation

if they are in the lower part of the wage distribution in their occupation. Workers in occupations

that grow faster than the slowest growing 10 percent but slower than the fastest growing 10

percent, have a probability of changing occupation that is U-shaped in their wage percentile.

The results of the corresponding analysis on the Large Sample are reported in Appendix

Figures 8(a) and 8(b). They exhibit the same qualitative patterns.

4.2 Human Capital and Switching Costs

Incorporating human capital and switching costs into our theory is important. It is likely that not

all wage growth is due to sorting, but human capital accumulation is also an important element.

On the theoretical side we highlight the role of general human capital for upward mobility, and

we show how to accommodate specific human capital that is tied to the occupation and acts as

a switching cost that make transitions between occupations less attractive. We introduce these

elements into the basic environment of Section 3, and then show in simulations that the basic

patterns for mobility still arise for reasonable parameter values.

For general human capital, assume that a worker at the beginning of his tth year in the

labor market has human capital H(t). Moreover, a worker who starts his ιth consecutive year

in occupation k has human capital hk(ι). We normalize both forms of human capital to be

zero in the first year, and assume that the human capital functions are weakly increasing. If a

worker switches occupation, he loses his occupation-specific human capital and has tenure ι = 1

in his new occupation. This introduces switching costs, and thus the optimal decisions have to

be calculated from a dynamic program that trades off the future gains from switching with the

immediate costs. For completeness, we also allow other switching costs κk that may arise when

a worker switches from occupation k to a different occupation, which might capture application

effort, retraining costs, etc.

Consider a worker with t years of general labor market experience and ι years of occupational

experience in occupation k. There are various ways in which human capital can influence the

output process. Our preferred specification is in analogy to (2)

Xk = ai +H(t) + hk(ι) + εi. (12)

leading to expected wage

Wk(A) = Pk(At +H(t) + hk(ι))− Πk. (13)

35



Since human capital accumulation is deterministic, a worker who observes his output can back out

ai+εi, and therefore learning is not affected by human capital accumulation and the distribution

F of beliefs in the population remains unchanged.32 For this adjusted output process (12) the

wages are still determined by (5) given the profit Πk that firms want to obtain. The main

difference to the previous sections is that workers solve a dynamic programming problem when

deciding on the optimal occupation decision. We again consider a stationary equilibrium where

firms’ equilibrium profits Πk remain constant over time. We define the precise notion of an

equilibrium for this setup in Appendix A3.

Consider first the implication of general human capital accumulation (H(t) strictly increas-

ing) for occupational switching, abstracting from switching costs (hk(ι) = 0, κ = 0). Compared

to a world without human capital the distribution of worker productivity now shifts by H(t) for

workers with t years of experience, since the relevant measure of a worker’s ability in producing

output is ai + H(t). Even though the new labor market entrants have the same distribution

of ability as in the setting without human captial, with general human capital older workers

become more productive and induce tougher competition for jobs in more productive occupa-

tions. Therefore, young workers start lower and in expectation move up to better occupations

over the lifetime. Human capital induces a drift toward more productive occupations, creating

another force for the upward movement through the occupation ladder beyond learning. This

leads naturally to a somewhat higher aggregate probability of switching to higher than to lower

occupations, as is visible in Figure 3.33 If the variance in output is reduced to zero, all movements

are upward and are entirely driven by improvements in skills over the workers lifetime, yet this

would be missing the substantial part of downward movements (even when staying with the same

firm) and associated wage implications that we observe in the data.

Our insights on U-shapes carry over to the setting with switching costs (hk(ι) increasing,

κ > 0). U-shapes still obtain for any wage setting that is weighted average (5) and (6) with

32Alternatively, we could e.g. exponentiate the right hand side of (12), which would still leave beliefs in the
cross-section unchanged.

33Hall and Kasten (1976) and a number of later papers (e.g., Miller (1984), Sichernam and Galor (1990)) have
also found that there is a systematic tendency for workers to move up to higher paying occupations with age.
Wilk and Sackett (1996) have noted the tendency of workers to move to occupations requiring higher cognitive
skills with age. Note that human capital accumulation is not necessary to induce an upward bias in switching:
Depending on the precise values of the γk’s and Pk’s the workers might enter mostly in low occupation when
young and then move up (or the reverse, depending on parameters). The main effect of general human capital is
that it adds an additional element that unambiguously shifts young workers to less productive occupations since
on average they cannot compete with older (more productive) workers in more productive occupations.

As an aside, note that we can add some additional terms αH(t) with α ≥ 0 to (13) to account for general
human capital that increases the productivity in all occupations but does not interact with productivity of the
occupation. This makes it possible to fit a wider range of wage growth patterns. In particular, this type of human
capital does not affect sorting and does not induce a drift toward the more productive occupations.
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positive weight on (5). In this case wages partially reflect the new information obtained through

the realized output, and very high (low) outlier wages can only arise because of very high (low)

output realizations, in which case the agent learned that he is much better (worse) than he

expected and it can be shown that at the extreme wages the update must be so large that

the gains from switching outweigh any finite switching costs. In contrast, when workers are

fully insured against the output risk by receiving the expected wage according to (6), the current

period wage does not reveal any information about what the worker learned in the current period

and the logic of the preceding argument does not apply. In this case, it could be that U-shapes

do not arise. This could happen, for example, if older workers are more productive and therefore

earn higher wages, but face higher switching costs and therefore have low probability of leaving

the occupation.

However, in numerical simulations we always found U-shapes for reasonable parameter val-

ues. For instance, consider the following numerical example. We set the model period to be

one year and assume that workers are in the labor market for 40 years. We assume that there

are 25 occupations (plus home production) of approximately equal size with prices given by

Pk = 1 + 0.05k for k ≥ 1. We set H(t) = 0.008t and hk(ι) = 0.008ι for ι ≤ 5 and hk(ι) = 0.04

otherwise. These choices imply that during the first 5 years in an occupation wages grow by

10% and half of this wage growth is due to accumulation of occupation-specific human capital

and half due to accumulation of general human capital. To ensure that (nearly) all workers have

positive ability we normalize average ability to a sufficiently high value µa = 50. Finally, we set

the precision φa = 0.667 and φε = 0.052. At these parameter values the model generates the

occupational mobility rate of approximately 10% and the variance of log wages of 0.15. Taken

together, sorting and human capital accumulation account for a life-time wage growth of 60%.

Figure 11 describes the patterns of occupational switching estimated in the model-generated

data. The probability of switching is clearly U-shaped in the position of a worker in wage

distribution in his occupation. Moreover, this pattern is also apparent when we condition on

years of labor market experience. We emphasize that this is just a numerical example and not

an attempt to calibrate the model. However, it is representative of the patterns we observe in

simulations for various parameterizations under wage setting given by by (6).

5 Connection to Existing Models

Our work connects to several strands of the literature discussed in the introduction. As we men-

tioned, our empirical findings on the shape and the direction of sorting conflict with predictions

of match-specific learning models (Jovanovic (1979), McCall (1990), Neal (1999)) and of island-
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(a) Overall. (b) For different years after graduation.

Figure 11: Non-parametric plot of probability of switching occupation by worker’s percentile in
the wage distribution within occupation, year, and years after graduation. Model Simulations.

economy models with human capital (Kambourov and Manovskii (2005, 2009a)). In both types

of models low wage earners tend to switch, and since they did not receive any additional informa-

tion about their fit to other occupations they take a random draw for their next occupation. In

contrast, the crucial part of our model is that the experience of workers in their current occupa-

tion determines their choice of the next occupation, and that the occupations can be ranked. In

such a world a bad fit can be characterized by underqualification or overqualification of a worker

for a particular job. This means that it is not only low wage workers who leave an occupation,

but also very qualified workers with high wages. This sorting property is very similar to sorting

in the classic Roy (1951) model, and we briefly highlight the similarities and differences to this

model in the following. The main difference relates to the equilibrium interaction among workers

and to the net mobility induced by learning. The latter is linked to recent work by Gibbons,

Katz, Lemieux, and Parent (2005), and we make this connection precise in the second part of

this section.

5.1 Roy Model

The idea that occupations might be vertically ordered goes back at least to the Roy (1951) model

with absolute advantage. In the basic version of the Roy model according to the formalization in

Heckman and Honore (1990) and Bils and McLaughlin (2001) there are two occupations 1 and

2 with output prices P1 and P2, respectively.34 Each worker is endowed with a two-dimensional

34Bils and McLaughlin (2001) are concerned with industries rather than occupations, but in terms of exposition
these can be used interchangeably. The later sections in Heckman and Honore (1990) also discuss in detail
identification with multiple occupations.
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s1

s2

skill distribution in society

indifference curve:
P1s1 = P2s2

(a) Illustration of the Roy model. si and Pi: skill
level and price of output in occupation i ∈ {1, 2}.

s1

s2

skill distribution in society

indifference curve:
P1s1 −Π1 = P2s2 −Π2

(b) Illustration of our model. si = a: skill level in
occupation i ∈ {1, 2}. Pi and Πi: price of output
and profit in occupation i ∈ {1, 2}.

Figure 12: Comparison between Roy model and our model for fixed productivities P1 and P2.

skill set (s1, s2) that describes his output in each occupation. Each worker chooses the occupation

where he obtains the highest profit, i.e., he chooses Occupation 1 if P1s1 > P2s2. Figure 12(a)

illustrates this. The solid line through the origin depicts all skill combinations (s1, s2) where the

workers are exactly indifferent between each occupation, and workers with skill combinations to

the right obtain a higher return in Occupation 1 and so choose it, while to the left they choose

Occupation 2.

Mobility arises only when prices change. For example, if the low productivity occupation

P1 improves, then the solid line becomes steeper and more agents choose Occupation 1. Which

agents change depends on the skill distribution in society. If the skills that are prevalent in

society are given by the dotted line in Figure 12(a), then the worst workers in Occupation 2

will leave and become the highest wage workers in Occupation 1. This is depicted in Figure

13(a). This is a setting with absolute advantage: A worker who is better in one occupation is

also more skilled in the other. The alternative picture with relative advantage would have a

decreasing dotted skill line where workers that are better in one occupation are not as skilled

in the other, in which case the lowest wage workers would leave occupation 2 when P1 increases

and become the lowest wage workers in occupation 1. U-shapes are not likely to arise unless the

skill distribution has a particular curvature.

Our model resembles the Roy model with absolute advantage. In our specification workers

choose Occupation 1 if P1s1 −Π1 > P2s2 −Π2 as indicated in Figure 12(b). All skills are on the

diagonal line since (s1, s2) = (a, a). The fact that Figure 12(b) is essentially a rotation of 12(a)

shows the close resembles when switching is driven by absolute advantage, yet our setup does
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s1

s2

skill distribution in society

indifference curve:
P1s1 = P2s2

(a) Illustration of the Roy model: when produc-
tivity P1 in Occupation 1 increases, more workers
choose Occupation 1.

s1

s2

skill distribution in society

indifference curve:

A
B

P1s1 −Π1 = P2s2 −Π2

(b) Illustration of our model: When productivity
P1 in Occupation 1 goes up, then the indifference
line becomes steeper (step A, but also the firms’
profit and therefore the intercept changes when the
number of jobs is fixed (step B).

Figure 13: Comparison between Roy model and our model when productivity P1 increases.

exhibits two major departures from the standard Roy model.

First and most importantly, workers learn about their skill over time, and therefore their

position on the dotted line in Figure 12(b) changes over time, which induces them to switch

occupation even if the aggregate productivity of all occupations remains unchanged.

Second, the interaction is not just decision-theoretic. If P1 increases, the line that divides

who selects into which occupation becomes steeper, as indicated in step A in Figure 13(b).

When the number of jobs in this occupation remains limited, then also the profits that the firms

make change and therefore the intercept changes as depicted by step B in Figure 13(b). If the

number of jobs is fixed, exactly the same skills select into each occupations as before, unless

the solid curve becomes steeper than the skill distribution in which case the matching pattern

reverse. The latter case generates the effects described in Section 4.1.1, where an increase (and

reversal) in occupational productivity changes the workforce composition because only workers

that learned that they are much better than they thought stay in Occupation 1, whereas those

workers that did not see their skills improve will be driven out by incoming high-skill workers

out of Occupation 2. This second effect is not present in the standard Roy model where there is

no interaction between the decisions of workers.
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5.2 Relation to Gibbons, Katz, Lemieux, and Parent (2005)

Our model of learning is related to work by Gibbons, Katz, Lemieux, and Parent (2005). They

also extend the Roy (1951) model to allow for learning about workers’ abilities. They do not

use an equilibrium model, and do not explicitly analyze the switching behavior of workers as a

function of their earnings. Rather, their focus is on the decision-theoretic problem of an individual

worker, for which they propose a instrumental variables method based on lagged occupational

choices in order to estimate his choice parameters consistently. Since adaptations of their model

allow to back out underlying parameters such as productivities even in our model, it is important

to review the connection.

Consider the expected wages in our model, and assume that productivities are constant

over time. Therefore, the profit vector (Π0,Π1, ...,ΠK) remains constant over time. This vector

implies that a worker at the beginning of his tth period in the labor market who observed output

realizations (X0, X1, ..., Xt−1) obtains an expected wage according to (6) of

E[Pk(ai + εit)− Πk|X0, X1, ..., Xt−1] = PkAit − Πk,

where we left out the additive human capital terms for notational convenience. For the decision-

theoretic problem of individual worker, profits Πk can be interpreted as parameters.

Now consider the following transformation where we raise the wage of workers into the

exponent:

E[e{Pk(ai+εit)−Πk}|X0, X1, ..., Xt−1]. (14)

In this alternative process output can be viewed as ePk(ai+εit), and profits are a fraction of output.

The latter part is harder to interpret in a standard equilibrium setting, but nevertheless this

specification gives rise to similar switching patterns, as we will see now. It corresponds to

the specification in Gibbons, Katz, Lemieux, and Parent (2005), (who also have additional

additive terms in the exponent capturing occupational and overall tenure and other observed

characteristics of the worker). Expression (14) is equal to

e{PkAit+(1/2)P 2
kφ
−2
t −Πk}.

Workers sort themselves to the occupation with the highest expected wage. Since the ranking

of wages is preserved under monotone transformations, we can take logarithms and obtain the

sorting criterium:

PkAit − Ωkt,
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where Ωkt := Πk + (1/2)P 2
kφ
−2
t now reflects the opportunity cost of obtaining the revenue PkAit

in occupation k, in contrast to only Πk in our model. This is due to the fact that the upside

potential of uncertainty is larger than the downside potential after exponentiating. This makes

young employees especially attractive, as their uncertainty is higher. To see this formally, note

that a worker will choose occupation k if his belief satisfies Ai,t ∈ [Bk,t, Bk+1,t) where the cutoffs

Bkt = Ωkt − Ωk−1,t/(Pk − Pk−1). This still has the potential to generate U-shapes, but since Bkt

is increasing in labor market experience t, older agents with the same belief as younger agents

sort themselves into a lower occupation, yielding a downward drift. If that drift is too strong,

then there will be no U-shapes if workers are paid their expected wage. This downward drift can

be offset once accumulation of general human capital is introduced, since it induces an upward

drift, yielding overall the potential for a balanced U-shape.

Based on wages according to (14), Gibbons, Katz, Lemieux, and Parent (2005) propose a

method of quasi-differencing of the wages and using lagged occupational choices as instruments

to estimate the underlying parameters. In this paper we provide evidence on mobility patterns

and show that it is consistent with the type of selection that Gibbons, Katz, Lemieux, and Parent

(2005) provide a method to control for. Since their method can be adapted to the setting in this

paper, we view the two papers as complementary to each other.

6 Conclusion

Using administrative panel data on 100% of Danish population we document a new set of facts

characterizing the patterns of occupational mobility. We find that a worker’s probability of

switching occupation is U-shaped in his position in the wage distribution in his occupation.

It is the workers with the highest or lowest wages in their occupations who have the highest

probability of leaving the occupation. Workers with higher (lower) relative wage within their

occupation tend to switch to occupations with higher (lower) average wages. Higher (lower) paid

workers within their occupation tend to leave it when relative productivity of that occupation

declines (rises) steeply.

To account for these patterns we suggest that it might be productive to think of occupations

as forming vertical hierarchies. Complementarities between the productivity of an occupation

and the ability of the workers induces workers to sort themselves into occupations based on

their absolute advantage. Since their absolute advantage is not fully known initially they update

after observing their output and re-sort themselves according to their update on their ability.

Employment opportunities in each occupation are scarce, inducing competition among workers

for them. We present an equilibrium model of occupational choice with these features and show
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analytically that it is consistent with patterns of mobility described above.

This theory captures the patterns of occupational mobility in a very parsimonious model. In

particular, it generates the patterns of “promotions” and “demotions” observed in the data. An

investigation of the occupational classification suggests that both of these switches up or down

the occupational hierarchy represent real occupational changes in the sense that the required skill

set changes substantially. Moreover, it is essential to take the pattern of selection implied by the

model into account to estimate the returns to occupational tenure, interpret earnings dynamics,

and to assess the effects of economic policies. While neither models of learning in the absence

of occupational differentiation (horizontal learning) nor models solely of comparative advantage

generate the data patterns that we find, a tractable combination of the two acocunts well for the

observed pattern. We also show that standard upward career progression due to human captial

accumulation can easily be intergrated into the framework, yet by itsself fails to account for the

downward movements observed in the data.

The analysis in this paper shows the qualitative ability of the model to account for the

new data patterns that we find (and for a number of patterns documented in prior work). Our

simulations suggests that the model might also generate the right quantitative magnitudes. In

terms of the future agenda, the main objective is to explore more fully its quantitative impli-

cations. In particular, while we think that the vertical sorting mechanism we described is an

important part of any comprehensive theory of occupational mobility, it appears unlikely that

it accounts for the full extent of occupational mobility. The main goal in this agenda will be to

embed and distinguish different economic forces − such as learning, fluctuations in occupational

productivities or demands, and search frictions in locating jobs in various occupations35 − in a

dynamic general equilibrium model of occupational choice and to quantitatively evaluate their

contribution to the amount of occupational mobility observed in the data. The key challenge in

this regard is to identify the sets of occupations forming distinct hierarchies in the data and the

extent of transferability of skills across occupations within and across these hierarchies.36 For

35If agents cannot instantaneously change jobs, but have to go through a search phase before they find a new job,
adjustment based on new information is not instantaneous. Nevertheless, if search frictions are sufficiently small
the allocation is close to the competitive outcome that we outline in this work and we expect the basic properties
to carry over (for convergence when the periods between search activities becomes small see for example Atakan
(2006a,b) and for convergence when the short side of a market gets matched with near certainty see Eeckhout
and Kircher (2010)).

36Note that the parameters of the stationary environments in Section 3 and Section A2 such as occupational
productivity Pk, profits Πk and human capital accumulation functions H(t) and hk(τ) can be consistently esti-
mated using the methodology proposed by Gibbons, Katz, Lemieux, and Parent (2005) even if the econometrician
does not know exactly which occupation belongs to which hierarchy. It suffices that the workers know this. If
they stay within distinct hierarchy, their past choices serve as instruments. However, if the environment is not
stationary (as in Section 4.1) or if switching occurs also across hierarchies, further investigation is necessary.
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example, one hierarchy could be electrical equipment assembler, electrician, electrical engineer,

and manager. Another could be truck driver, taxi driver, motor vehicle mechanic, and sales

representative. Yet another could be an economics consultant, economics professor, and dean.

It is likely that switches within and across these hierarchies are present in the data. It is also

likely that human capital is not equally transferable within and between hierarchies. Developing

a way to identify such hierarchies in the data and the transferability of human capital between

them seems essential to enable future quantitative analysis.
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APPENDICES

A1 Omitted Proofs and Derivations

Remainder of Proof of Proposition 1:

Proof. Consider wage setting process (6) and associated switching probability Sk,t first. Define

δk = (Bk+1 −Bk) /2 to be half of the distance of interval [Bk, Bk+1), and recall that Bk = Bk+δk.

Any other belief A can be written in terms of the distance δ from Bk. Then

Sk,t(PkBk − Πk)− Sk,t(Pk(Bk + δ)− Πk)

= Gt(Bk|Bk)−G(Bk|Bk + δ) +Gt(Bk+1|Bk + δ)−Gt(Bk+1|Bk) (A1)

= Gt(−δk|0)−G(−δk − δ|0) +Gt(δk − δ|0)−Gt(δk|0)

=

∫ δ

0

[gt(−δk − ε|0)− gt(δk − ε|0)] dε, (A2)

where the second equality follows from lateral adjustment. Clearly this distance is zero when

δ = 0. Symmetry around zero and single-peakedness imply that the integrand in (A2) is strictly

negative for any ε > 0. Therefore, this integral is strictly negative for δ > 0. When δ < 0 the

integrand of (A2) is positive for all relevant ε but the integral is negative because of integration

from zero to a negative number. The proposition obtains because integral (A2) decreases in the

absolute value |δ|.
Now consider instead the wage setting process (5). If we observe the worker of cohort t

in occupation k at wage w, (5) implies that his output must have been X(w) = (w + Πk)/Pk.

If we knew the prior A that this person had, we could by (3) calculate his posterior as A′ =

αA+ (1− α)X(w), where α = φt/φt+1.

Since we only know the wage but do not know his prior A, we can only determine the

range of priors for which the worker would switch. He switches up if A′ ≥ Bk+1,which we

can rewrite as αA + (1 − α)X(w) ≥ Bk+1. He switches down if A′ ≤ Bk,which we can rewrite

as αA + (1 − α)X(w) ≤ Bk. Since the worker chose occupation k in period t, we know that

A ∈ [Bk, Bk+1). Therefore, neither of the two inequalities can be satisfied if X(w) ∈ [Bk, Bk+1)

or equivalently w ∈ [BkPk − Πk, Bk+1Pk − Πk). Therefore, for such intermediate wages the

switching probability sk,t (w) = 0, which constitutes a local minimum.

We complete the proof by showing that very high and low wages constitutes a local maximum

for the switching probability. This is the case since at such wages the switching probability

is one. Since A ∈ [Bk, Bk+1), the condition for upward switching is satisfied for any of the

priors if it holds for the lowest possible prior, i.e., αBk + (1 − α)X(w) ≥ Bk+1 which yields

equivalently X(w) ≥ Bk+1−αBk
1−α or w ≥ Bk+1−αBk

1−α Pk − Πk. So for wages above this threshold

sk,t(w) = 1. Similarly, the condition for downward switches is satisfied for all priors if it holds
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for the highest prior, which means αBk+1 + (1−α)X(w) ≤ Bk or equivalently X(w) ≤ Bk−αBk−1

1−α
or w ≤ Bk−αBk−1

1−α Pk − Πk. For such low wages again the switching probability is sk,t(w) = 1.

This establishes the U-shape property. It does not establish strict U-shapes even though the

range of priors at which the workers will switch expands with the distance of the wage from the

“no-switching” region [BkPk −Πk, Bk+1Pk −Πk). Consider a wage realization w > Bk+1Pk −Πk

and a different wage realization w′ > w. After the first, agents with priors in (A,Bk+1) switch

for some A, while after the latter agents with priors in (A′, Bk+1) switch, and A′ < A because

at the higher wage updating is stronger. While this might suggest that more agents switch after

w′, this need not be true. The probability that the prior is in (A,Bk+1) conditional on observing

w may in fact be higher than the probability that the prior was in (A′, Bk+1) conditional on

realizing wage w′. One can construct examples where this happens, and in such a case more

agents switch after w than after w′. This arises because the conditional probability does not

have to be monotone.

Remainder of Proof of Proposition 2:

Proof. Consider workers that chose interior occupation k in their tth year in the labor market.

We will use the notation as in the proof of Proposition 1, and exploit the following result shown

there: Workers switch only if X(w) is either below Bk or above Bk+1; if they switch and X(w) ≤
Bk, they switch down; if they switch and X(w) ≥ Bk+1, they switch up. Note that X(w) ≤ Bk is

equivalent to w ≤ BkPk−Πk, while X(w) ≥ Bk+1 is equivalent to w ≥ Bk+1Pk−Πk. Conditional

on switching, the switch will be downward with probability 1 if w ≤ BkPk − Πk and will be

upward with probability 1 if w ≥ Bk+1Pk − Πk, leading to an increasing schedule.

Proof of Proposition 4:

Proof. Consider workers with t years of labor market experience that chose occupation k and

those that chose occupation k′. In year t + 1 we compare their wages, conditional on choosing

k′. All workers that we compare have some belief in [Bk′−1, Bk′+2) in period t, and a belief in

[Bk′ , Bk′+1) in period t + 1 of their work-life. The distribution of the update is concave in the

relevant region if Bk′+2 − Bk′−1 is not too large since normal distributions are concave around

their mean (in particular we require Bk′+2−Bk′−1 <
√
φt+1/(φε + φt)). Since by market clearing

F (Bk′+2)−F (Bk′−1) = γk′+1 + γk′ + γk′−1, this holds if the measure of firms in these occupations

is not too large.

The workers’ update At+1 is distributed symmetrically around At. If k′ > k, the density

gt(At+1|At) of the update evaluated at any point At+1 in [Bk′ , Bk′+1) is higher (because of sym-

metry and single-peakedness) and has a larger derivative (because of concavity) for any stayer

(person with At ∈ [Bk′ , Bk′+1) than for any switcher (person with At ∈ [Bk′−1, Bk′)). It then fol-

lows directly that the conditional distribution of the update, conditional on At+1 ∈ [Bk′ , Bk′+1),

for stayers first order stochastically dominates the distribution for switchers. The implication
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for expected wages follows immediately. For k′ < k the density is still higher but the deriva-

tive is lower, which directly implies that the distribution for switchers first order stochastically

dominates the distribution for stayers.

A2 Free Entry into Occupations

In the main body of the paper we have taken the number of jobs per occupation as fixed.

Here we briefly outline that the model extends to an economy in which jobs can be created at

some opportunity cost. Clearly entry costs have to differ between occupations to sustain several

occupations with different productivities (since otherwise only the most productive occupations

will operate). Assume that the per-period cost to create and maintain a job in occupation k

(or r, if we adopt the notation from section 4.1) is given by Ck(γk) = ck + c(γk), except for

home production sector k = 0 where entry costs are C0(γ0) = 0. That is, there is a fixed cost ck

independent of the number of other entrepreneurs who create jobs, and a component c(γk) that

depends on the overall number of entrants into the occupation.

If we assume that c(γk) = 0, then we have perfectly elastic supply of jobs. This corresponds

to a model in which workers can simply rent jobs at cost ck. Occupations with lower productivity

have to have lower costs as otherwise no worker would rent the job. The model is particularly

simple to solve because firms profits are exogenously tied to the entry costs:

Πk = ck. (A3)

This entry assumption corresponds to the standard Roy models which are essentially decision-

theoretic: any worker that wants to enter occupation k can do so by “buying” a machine at cost

ck, there are no further congestion effects, and competition between workers is essentially absent.

The drawback of having only fixed costs ck is the response of the market when productivities

change over time, as we analyzed for the basic model in Section 4.1. In a model with absolute

advantage, if an occupation becomes more productive than another one but retains its lower

entry cost, then the other occupation completely disappears. There are various reasons why we

don’t expect this to occur: Prices might change in response to output changes or costs might

change in response to the number of jobs in the occupation. Costs change for example if there

is heterogeneity among entrepreneurs and c(γk) reflects the costs of the marginal entrant: the

more entrepreneurs enter the less able the marginal one is.37 We integrate this idea into the

model by assuming that c(.) is increasing and convex. If prices are always high enough to cover

the fixed cost, then Inada conditions on the second component ensure that even with changing

37In this interpretation all infra-marginal entrants will generate profits larger than their costs. Only the marginal
entrant will be exactly indifferent to entering.
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productivities no occupation completely vanishes, but the level of operation might substantially

vary.38,39

An equilibrium is now a tuple Π = (Π0, ...,ΠK) of profits and a tuple γ = (γ0, ...γK) of entry

levels such that all conditions in Equilibrium Definition 1 are satisfied and additionally it holds

that Πk = C(γk) for all k > 0. All results regarding switching behavior from Section 3 apply,

only that now the cutoffs Bk are determined in a way that incorporates optimal entry. It is easy

to solve for these cutoffs by considering the following set of equations in analogy to (7) and (8)

C(γk)− C(γk−1)

Pk − Pk−1

= Bk, (A4)

F (Bk)− F (Bk−1) = γk, (A5)

for all k > 0.

Equation system (A4) and (A5) allows us to determine the size of each occupation in each

period even in the case when productivities are changing as in Section 4.1. We can now define

an improving occupation in the sense of Proposition 5 as one that improves its position at both

the high and the low end, i.e. Γτ+1
r > Γτr and Γτ+1

r − γτ+1
r > Γτr − γτr , where again superscripts

indicate the time period. A sufficient increase additionally means Γτ+1
r ≥ Γτr + γτr . With these

extended definitions the proposition remains valid. If on the other hand an occupation with

increasing productivity expands so much in size that the measure of jobs with strictly lower

productivities Γr − γr actually decreases, it starts to employ not only more high ability but also

more low ability workers. When we consider a smooth increase in the productivity of occupation

r and hold the other productivities fixed, it is easy to see that the expansion of the workforce

is continuous but the position switches upward when it overtakes another occupation, at which

point indeed both upper and lower position Γr and Γr− γr increase jointly and the ability of the

work force improves substantially in the sense of first order stochastic dominance.

38In particular, it is easy to verify that the following conditions ensure employment in all occupations k > 0 in
all periods. Assume that c′(0) = 0 and there is some constant ψ > 0 and employment level e = [αT − F (ψ)]/K
such that limγ→e c′(γ) =∞, which ensures that no occupation employs more than e workers. Moreover, assume
that prices evolve according to some (possibly stochastic) process with the feature that there exists a lowest price
P > 0. That is, no occupation k > 0 ever draws a price below P. Then ψP > maxk ck ensures that it is optimal
to have at least some employment in each occupation at each point in time because the worker with ability ψ
never gets employed and therefore could be hired for free.

39Another alternative formulation that ensures the operation of all occupations is that prices are changing while
entry costs remain constant, i.e. Pk(γk) is dependent on the level of employment and Ck is fixed. Together with
some Inada conditions still all occupation remain active, but the requirement that Πk = Ck implies that the
equilibrium ordering of the productivities Pk(γk) of occupations cannot change.

51



A3 Equilibrium Definition with Human Capital and

Switching Costs

The output-contingent wages of workers are still given by (5), where output is now determined

by (12). The expected wage for a worker in occupation k with prior mean A at the beginning of

his tth period in the labor force and his ιth consecutive period in this occupation is in analogy

to (6)

Wk(A, t, ι) = Pk[A+H(t) + hk(ι)]− Πk.

For any given profit vector Π = (Π0, ...,ΠK) the worker can forecast his expected wage in all

occupations for given prior and given experience. He can then evaluate his optimal choice of

occupation by simple backward induction. His state vector at the beginning of each period

is (t, k, ι, A) : his year in the labor market t, the occupation k he was last employed in, his

consecutive years of experience in this occupation ι, and his belief about his mean ability A.

Newborns start with home production as their previous occupation. In the last year of his life

the worker optimizes

V (T, k, ι, A) = max

{
Wk(A, T, ι),max

m 6=k
{Wm(A, T, 1)− κm}

}
,

i.e. he chooses whether to stay in his previous occupation or to switch to a new occupation where

this would be his first year of experience and pay the switching costs. This gives a decision rule

d(T, k, ι, A|Π) ∈ {0, ..., K} regarding the occupation that the worker chooses given the profits

that firms make. Similarly, a worker with t < T years of experience maximizes his expected

payoff including the continuation value

V (t, k, ι, A) = max

{
Wk(A, t, ι) + βEA′V (t+ 1, k, ι+ 1, A′),

maxm6=k{Wm(A, t, 1)− κm + βEA′V (t+ 1,m, 2, A′)}

}
,

where β ∈ (0, 1] is the discount factor and A′ is the update about the worker’s mean ability. The

solution to this problem gives again a decision rule d(t, k, ι, A|Π) ∈ {0, ..., K}. It is straightforward

to show that for given profit vector Π these decision rules are unique for almost all ability levels

A. Given the distribution Ft(A) of priors of each cohort and these decision rules, one can derive

for given Π the steady-state number of agents that choose occupation k, call it vk(Π). Similar to

Equilibrium Definition 1 we can now define:

Definition 6 An equilibrium is a vector of profits (Π0, ...ΠK) such that Π0 and vk(Π) = γk for

all k > 0.
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A4 Appendix Tables

Table A-1: Summary statistics for the Large and Small samples and subsamples.

Small Sample Large Sample

Sample A Sample B Sample A Sample B

Number of observations 402,136 368,520 1,292,932 1,229,339

Number of occupations 229 143 324 242

Age 29.66 29.49 33.25 33.20

Occupational tenure 4.41 4.41 4.54 4.57

Occupational spell number 1.69 1.67 2.30 2.30

Occupational switchers 0.18 0.17 0.19 0.18

Employer tenure 2.36 2.33 2.78 2.77

Employer switchers 0.18 0.19 0.15 0.15

Industry tenure 3.38 3.35 3.78 3.79

Years after graduation 6.49 6.40 9.56 9.54

12 years of school or less 0.73 0.74 0.65 0.66

13 years of school or more 0.27 0.26 0.35 0.34

Hourly wage in DKK in 1995 170.13 168.75 172.66 172.29

Married 0.30 0.30 0.42 0.42

Number of children 0.71 0.70 0.94 0.94

Note − The table contains the descriptive summary statistics of the Large and Small
samples defined in the main text. For each of the two main samples two subsamples A
and B are defined. Sample A imposes a restriction that there are at least 10 workers in
an occupation in a given year. Sample B imposes a restriction that there are at least
10 workers from the same cohort (defined by the year of completing education) in an
occupation in a given year.
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Table A-2: Net wage changes for various occupational transitions.

Type of occupational transition

Switch up Switch down

All workers 2.22 -0.67
(0.17) (0.19)

Firm stayers 1.16 -0.75
(0.19) (0.21)

Firm switchers 2.07 -2.73
(0.45) (0.48)

Note − The table contains wages changes for workers experiencing

various types of occupational transitions net of the wage change of

the corresponding group of occupational stayers. Standard errors in

parenthesis.
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A5 Appendix Figures

A5.1 Alternative Wage Regression Specifications

(a) Wage regression excluding firm and industry
tenure.

(b) Wage regression excluding occupational spell
number.

Figure A-1: Non-parametric plot of probability of switching occupation by worker’s percentile
in residual distributions from alternative wage regression specifications.
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A5.2 Sensitivity to Bandwidth Choice

(a) Half bandwidth. (b) Double bandwidth.

Figure A-2: Non-parametric plot of probability of switching occupation by worker’s percentile
in the wage distribution within occupation and year for half and double bandwidth.

(a) Half bandwidth. (b) Double bandwidth.

Figure A-3: Non-parametric plot of probability of switching occupation by worker’s percentile
in the distribution of wage residuals for half and double bandwidth.
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(a) Overall. Half bandwidth. (b) Overall. Double bandwidth.

(c) For various years after graduation. Half
bandwidth.

(d) For various years after graduation. Double
bandwidth.

Figure A-4: Non-parametric plot of probability of switching occupation by worker’s percentile
in the wage distribution within occupation, year, and years after graduation for half and double
bandwidth.
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A5.3 Results on the Large Sample

(a) Distribution of raw wages within occupation
and year.

(b) Distribution of wages residuals.

(c) Distribution of raw wages within occupation,
year, and year after graduation.

(d) Distribution of raw wages within occupation,
year, and year after graduation for various years
after graduation.

Figure A-5: Non-parametric plot of probability of switching occupation by worker’s percentile
in the relevant wage distribution. Large Sample.
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(a) Distribution of raw wages within occupation and
year. Average wage in occupation from population.

(b) Distribution of wages residuals. Average wage
in occupation from time constants in wage regres-
sion.

(c) Distribution of raw wages within occupation,
year, and year after graduation. Average wage in
occupation from population.

(d) Distribution of raw wages within occupation,
year, and year after graduation for different years
after graduation. Average wage in occupation from
population.

Figure A-6: Non-parametric plot of direction of occupational mobility, conditional on switching
occupation, by worker’s percentile in the relevant wage distribution before the switch. Large
Sample.

59



(a) Unconditional. (b) Conditional on the number of years after grad-
uation.

(c) Unconditional. (d) Conditional on the number of years after grad-
uation.

Figure A-7: Weighted average of year t+1 ratios of real wages of workers who switch occupations
between years t and t + 1 over (1) workers who stay in the same original occupation in years
t and t + 1 (Panels 7(a) and 7(b)) or (2) workers who stay in the same destination occupation
in years t and t + 1 (Panels 7(c) and 7(d)) by direction of the switch (i.e., whether the switch
involves moving to an occupation that pays more or less on average than the source occupation).
Large Sample.
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(a) Distribution of raw wages within occupation and
year. Growth rates of average wage in occupation
from population.

(b) Distribution of wage residuals. Growth rates of
average wage in occupation from time constants in
wage regression.

Figure A-8: Non-parametric plot of probability of switching occupation by worker’s percentile in
the relevant wage distribution. For the fastest growing 10% of occupations, the slowest growing
10% of occupations, and the remaining 80% of occupations. Large Sample.
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A5.4 Patterns of Occupational Mobility Within and Across Firms
Conditional on Worker’s Position in the Distribution of Wage
Residuals

Figure A-9: Non-parametric plots of probability of switching occupation and of direction of
occupational mobility conditional on switching firms by worker’s percentile in the distribution
residual wages.

Figure A-10: Non-parametric plots of probability of switching occupation and of direction of oc-
cupational mobility conditional on staying with the firm by worker’s percentile in the distribution
of residual wages.
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A5.5 Results on Various Levels of Occupational Aggregation

(a) Four-digit classification. (b) Three-digit classification.

(c) Two-digit classification. (d) One-digit classification.

Figure A-11: Non-parametric plot of probability of switching occupation by worker’s percentile
in the distribution of raw wages within occupation, year, and number of years after graduation.
Various occupational classifications.
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A5.6 Results on Various Occupational Grouppings

(a) Consructed occupational groups. (b) All managers in one occupation.

(c) No managers in sample. (d) No “Not elswhere classified” occupations.

Figure A-12: Non-parametric plot of probability of switching occupation by worker’s percentile
in the distribution of raw wages within occupation, year, and number of years after graduation.
Various occupational groupings.
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A5.7 Assessing the Role of Measurement Error

Figure A-13: Non-parametric plots of probability of switching occupation between years t and
t+ 1 and of direction of occupational mobility conditional on staying in the same occupation in
years t− 1 and t and staying the same occupation in years t+ 1 and t+ 2 by worker’s percentile
in the distribution of raw wages.

Figure A-14: Non-parametric plots of probability of switching occupation between years t and
t+ 1 and of direction of occupational mobility conditional on staying in the same occupation in
years t− 1 and t and staying the same occupation in years t+ 1 and t+ 2 by worker’s percentile
in the distribution of residual wages.
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Figure A-15: Non-parametric plots of probability of switching occupation between years t and
t + 1 and of direction of occupational mobility conditional on staying in the same occupation
in years t − 2, t − 1, and t and staying the same occupation in years t + 1, t + 2, and t + 3 by
worker’s percentile in the distribution of raw wages.

Figure A-16: Non-parametric plots of probability of switching occupation between years t and
t + 1 and of direction of occupational mobility conditional on staying in the same occupation
in years t − 2, t − 1, and t and staying the same occupation in years t + 1, t + 2, and t + 3 by
worker’s percentile in the distribution of residual wages.
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